Diskrete Quadratmittelapproximation durch Splines mit freien Knoten

Verteidigung der Dissertation von

Dipl.-Math. Torsten Schütze 16. Januar 1998

Aufbau der Arbeit

Quadratmittelapproximation fehlerbehafteter Daten durch

- ① Univariate Splines
- ② Univariate Splines mit Nebenbedingungen Hauptbeitrag, bisher nicht behandelt
- ③ Bivariate Tensorprodukt-Splines

allgemeine Herangehensweise

- Einführung zweier Optimierungsprobleme:
 vollständig \iff reduziert
- Lösbarkeit, Äquivalenz
- Effiziente Lösung des reduzierten Problems

Gegeben: Daten $\{(x_i, y_i) : i = 1, ..., m\}$

streng monoton steigende Abszissen $x_i \in [a,b] \subset \mathbb{R}$

Modell: $y_i = g(x_i) + \epsilon_i$, $g \in \mathbb{C}^q$ unbekannt

Forderungen an Approximation $s \approx g$:

leichte Auswertbarkeit
Glattheit

Datenreduktion
Formerhaltung

Problemstellung: Approximiere g durch Spline $s \in \mathcal{S}_{k, \boldsymbol{\tau}}$

 $\mathcal{S}_{k,m{ au}}$ – Raum der polynomialen Splines der Ordnung $k\geq 1$ mit Knoten $m{ au}:=(au_1,\dots, au_{n+k})^T$

Wähle Parameter so, daß

$$\frac{1}{2} \sum_{i=1}^{m} \left[y_i - s(x_i) \right]^2 + \mu \frac{1}{2} \int_a^b \left[s^{(r)}(x) \right]^2 dx \to \min$$

B-Splines als Basis von $\mathcal{S}_{k, \tau} \Longrightarrow s = \sum_{j=1}^n B_{j,k, \tau} \alpha_j$

Schoenberg-Funktional:

$$\mathfrak{f}(oldsymbol{lpha},oldsymbol{ au}) := rac{1}{2} \left\| \mathbf{y} - \mathbf{B}(oldsymbol{ au}) oldsymbol{lpha}
ight\|^2 + \mu rac{1}{2} \left\| \mathbf{S}_r(oldsymbol{ au}) oldsymbol{lpha}
ight\|^2$$

Ziel: Optimiere über Koeffizienten und Knoten

⇒ nichtlineares, hoch strukturiertes Quadratmittelproblem

Freie Knoten: $\mathbf{t} = \left(au_{p(1)}, \dots, au_{p(l)}
ight)^T \in \mathbb{R}^l$

Lagebedingungen: Verhindere Zusammenfallen von Knoten

$$\tau_{p(j)} \in [\tau_{p(j)-1} + \epsilon h_j, \tau_{p(j)+1} - \epsilon h_j]$$

mit $h_j := \tau_{p(j)+1} - \tau_{p(j)-1}$ $(j = 1, \dots, l), \ \epsilon > 0$

 \Longrightarrow

 $\mathbf{Ct} - \mathbf{h} \geq \mathbf{0}$

Shape Constraints: $\forall x \in [\tau_i, \tau_{i+1})$

$$l_i \le s^{(p)}(x) = \sum_{j=p+1}^n B_{j,k-p,\tau}(x) \alpha_j^{(p)} \le u_i$$

⇒ semi-infinites Optimierungsproblem

Spezialfall: $\mathbf{l}=0,\mathbf{u}=+\infty\Longrightarrow$ Positivität, Monotonie, . . .

Vereinfachung: Hinreichende Bedingungen

$$\mathbf{L} \leq oldsymbol{lpha}^{(p)} = \mathbf{D}_p(\mathbf{t})oldsymbol{lpha} \leq \mathbf{U}$$

Beachte: $\mathbf{l} < \mathbf{u}$ ist nicht hinreichend für $\mathbf{L} \leq \mathbf{U}$

Nebenbedingungen heißen $extit{strikt konsistent}$, falls $\mathbf{L} < \mathbf{U}$

Vollständiges Problem

bei $\mathbf{C}\mathbf{t} - \mathbf{h} \geq \mathbf{0}$ und $\mathbf{L} \leq \mathbf{D}_p(\mathbf{t}) oldsymbol{lpha} \leq \mathbf{U}$

Charakteristik

Für festes $\mathbf{t} \implies$ lineares QMP in $oldsymbol{lpha} \implies$ Lösung $oldsymbol{lpha}(\mathbf{t})$

Subproblem (A)

bei
$$\mathbf{L} \leq \mathbf{D}_p(\mathbf{t}) oldsymbol{lpha} \leq \mathbf{U}$$

Idee

Ersetze $oldsymbol{lpha}$ im vollständigen Problem durch optimalen Wert $oldsymbol{lpha}(\mathbf{t})$

⇒ Reduziertes Problem

unrestringiert: separable least squares, Golub/Pereyra [73] restringiert: constrained semi-linear least squares, Parks [85]

Reduziertes Problem

$$egin{aligned} & ext{minimizere} & f(\mathbf{t}) := rac{1}{2} \left\| \mathbf{F}(\mathbf{t})
ight\|^2 \end{aligned}$$

bei

$$\mathbf{Ct} - \mathbf{h} \geq \mathbf{0}$$

wobei
$$\mathbf{F}(\mathbf{t}) := \left(egin{array}{c} \mathbf{y} \ \mathbf{0} \end{array}
ight) - \left[egin{array}{c} \mathbf{B}(\mathbf{t}) \ \sqrt{\mu} \mathbf{S}_r(\mathbf{t}) \end{array}
ight] oldsymbol{lpha}(\mathbf{t})$$

und $lpha(\mathbf{t})$ löst Subproblem (A)

Theorem 1 (Existenz einer Lösung des reduzierten Problems)

Sei
$$\left\{\mathbf{t} \in \mathbb{R}^l : \mathbf{C}\mathbf{t} - \mathbf{h} \geq \mathbf{0}
ight\}
eq \emptyset$$
.

Für $p, r \in \{0, \dots, q\}$, q < k gelte:

(V1)
$$\tau_j < \tau_{j+k-q}$$
 $(j = q+1, \dots, n)$

(V2) Regularitätsbedingung: $m \ge r$ und $\mu > 0$

(V4) strikte Konsistenz ${f L} < {f U}$

Dann hat das reduzierte Problem eine Lösung \mathbf{t}^* .

Theorem 2 (Korrespondenz vollständiges \leftrightarrow reduziertes Problem)

Sei $\mathbf{t}^* \in \left\{\mathbf{t} \in \mathbb{R}^l : \mathbf{C}\mathbf{t} - \mathbf{h} \geq \mathbf{0} \right\}$.

Für $p, r \in \{0, \dots, q\}$, q < k gelte:

(V1)
$$au_{j}^{*} < au_{j+k-q}^{*} \qquad (j = q+1, \dots, n)$$

- (V2) Regularitätsbedingung: $m \ge r$ und $\mu > 0$
- (V3) $k \ge 3$
- (V4) strikte Konsistenz ${f L} < {f U}$
- (V5) strikte Komplementarität der Lagrange-Parameter ${f u}^*$ von Subproblem (A) für ${f lpha}({f t}^*)$

Dann gilt

- (i) $(oldsymbol{lpha}^*, \mathbf{t}^*)$ globale Minimalstelle des vollständigen Problems \Longrightarrow
 - ullet $lpha^*$ globale Minimalstelle von Subproblem (A)
 - t* globale Minimalstelle des reduzierten Problems
- (ii) \mathbf{t}^* erfüllt notwendige Optimalitätsbedingungen erster Ordnung für reduziertes Problem $\Longrightarrow (\boldsymbol{\alpha}(\mathbf{t}^*), \mathbf{t}^*)$ erfüllt notwendige Optimalitätsbedingungen erster Ordnung für vollständiges Problem

Numerische Lösung des reduzierten Problems

Vorteile

- rightharpoonup lengtharpoonup leng
- rightharpoons keine Startwerte für lpha
- lineare Nebenbedingungen
- volle Ausnutzung der Bandstruktur

Nachteile

- komplizierte Struktur der Ableitungen
- $lpha(\mathbf{t})$ nur Lipschitz-stetig bei nichtstrikter Komplementarität
 - benutze verallgemeinertes GN-Verfahren lineare NB =>> nur zulässige Punkte
 - kritische Punkte:

Berechnung der Residuumsfunktion (Schwetlick/Kunert [93]) Berechnung der Jacobi-Matrix

Jacobi-Matrix des reduzierten Funktionals

$$\mathbf{J} = oldsymbol{\partial} \mathbf{F} = \mathbf{J}_K + \mathbf{J}_R, \qquad oldsymbol{\partial}$$
 Frechét-Ableitung bez. \mathbf{t}

Es gilt
$$\mathbf{J}^T\mathbf{F}=\mathbf{J}_K^T\mathbf{v}$$
 $\mathbf{J}^T\mathbf{J}=\mathbf{J}_K^T\mathbf{J}_K+\mathbf{J}_R^T\mathbf{J}_R$

- ullet ${f J}_R$ schwierig zu berechnen
- ullet ${f J}_R$ trägt nicht zum Gradienten bei

$$\bullet \ \mathbf{J}_{R}^{T}\mathbf{J}_{R}=\mathcal{O}\left(\left\|\mathbf{F}\right\|^{2}\right)$$

 \Longrightarrow vernachlässige ${f J}_R$ gemäß der GN-Philosophie Kaufman [75], unrestringierte Probleme ${f J}_K$ Kaufman-Approximation

Neu: Verallgemeinerung auf restringierte Probleme

Man zeigt: Eigenschaften von \mathbf{J}_K übertragen sich unter Voraussetzungen von Theorem 2 \Longrightarrow qualitativ gleiche Konvergenzeigenschaften, bestätigt durch numerische Tests

Notation

$$egin{aligned} ar{\mathbf{R}} &:= - \left[egin{aligned} \mathbf{D}_p(\mathbf{t}) \ -\mathbf{D}_p(\mathbf{t}) \end{aligned}
ight]_{i \in \mathcal{I}} \in \mathbb{R}^{n_a\,,n} \ ar{\mathbf{\Gamma}} &:= -oldsymbol{\partial} \left[egin{aligned} \mathbf{D}_p(\mathbf{t}) \ -\mathbf{D}_p(\mathbf{t}) \end{array}
ight]_{i \in \mathcal{I}} oldsymbol{lpha}(\mathbf{t}) \in \mathbb{R}^{n_a\,,l} \ \mathbf{J}_{\mathbf{t}} &:= -oldsymbol{\partial} \left[egin{aligned} \mathbf{B}(\mathbf{t}) \ \sqrt{\mu} \mathbf{S}_r(\mathbf{t}) \end{array}
ight] oldsymbol{lpha}(\mathbf{t}) \in \mathbb{R}^{m+n-r,l} \end{aligned}$$

 $\mathbf{N} \in \mathbb{R}^{n-n_a,n}$

Nullraumbasis von $ar{\mathbf{R}}$

$$\mathbf{P}_{\left[egin{array}{c} B \ \sqrt{\mu}S \end{array}
ight]N}^{\perp} := \mathbf{I}_{m+n-r} - \left(\left[egin{array}{c} B \ \sqrt{\mu}\mathbf{S}_r \end{array}
ight]\mathbf{N}
ight) \left(\left[egin{array}{c} B \ \sqrt{\mu}\mathbf{S}_r \end{array}
ight]\mathbf{N}
ight)^{+}$$

$$\mathbf{J}_K := \mathbf{P}_{\left[\sqrt{\mu}S
ight]N}^{\perp} \left(\mathbf{J_t} + \left[egin{array}{c} \mathbf{B} \ \sqrt{\mu}\mathbf{S}_r \end{array}
ight] ar{\mathbf{R}}^+ ar{oldsymbol{\Gamma}}
ight) \in \mathbb{R}^{m+n-r,l}$$

heißt Kaufman-Approximation für $\partial {f F}$

Strukturausnutzung durch spezielle orthogonale Faktorisierungen technisch kompliziert \Longrightarrow Arbeit

Numerische Tests

- Algorithmen wurden in Programmpaket implementiert
- volle Ausnutzung der Struktur für univariate Probleme
- strikte Abbruchkriterien (Testzwecke!)

Arctan-Daten

8 B-Splines der Ordnung 4, l=4 freie Knoten

Monotonie

Tabelle 1: Arctan-Daten $\mu=1.0$ E-03, r=2

	\mathbf{t}^0	RCSP-Ka-ED	RCSP-GP-OD
$ au_5$	-6.0	-8.760175E-01	-9.652265 E-01
$ au_6$	-2.0	-2.301281E-01	-3.258263E-01
$ au_7$	2.0	2.743868E-01	3.454588E-01
$ au_8$	6.0	$8.822404 extsf{E-01}$	9.809856 E-01
Zeit [s]		0.116	3.259
F	2.359790 E+00	5.230920 E-01	5.098921 E-01

Bivariate Tensorprodukt-Splines

- Verallgemeinerung auf bivariate Approximation/Glättung durch Tensorprodukt-Splines bei Rechteckgitterdaten
- ✓ Verwendung eines separablen Glättungsterms → Probleme zu festen Knoten zerfallen in univariate Probleme
- Methoden zur Strukturausnutzung (Kaufman-Approximation) übertragbar

Bivariate Titan-Daten

Tensorisieren der univariaten Daten (Standardbeispiel)

$$49 \times 49 = 2401$$
 Datenpunkte

$$n_1=11$$
, $n_2=9$ kubische B-Splines in x- bzw. y-Richtung

$$l_1 = 7, l_2 = 5$$
 freie Knoten

äquidistante Startknoten

Tabelle 2: Bivariate Titan-Daten: CONSTR \leftrightarrow NPSOL

	Startknoten	CONSTR	NPSOL
Schritte		93	101
Zeit [s]		51.26	59.27
$\ \mathbf{F}\ $	9.049841 E+00	1.580966 E+00	1.560459 E+00

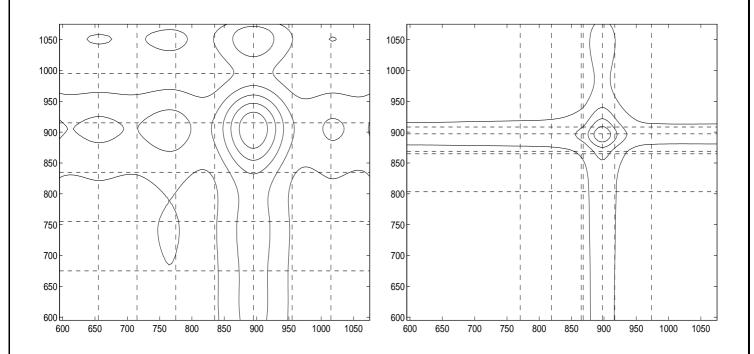


Abbildung 1: Bivariate Titan-Daten: Höhenlinien und Knoten

Zusammenfassung

- Algorithmen zur Approximation von fehlerbehafteten Daten durch Splines mit freien Knoten
- Anwendungsgebiete:
 Spline = Ausgangspunkt komplizierterer Rechnungen
- Beiträge der Arbeit:
 - univariate Splines ohne NB
 - univariate Splines mit NB
 - bivariate Splines ohne NB

Ausblick

Tensorprodukt-Splines bei "Scattered Data"
Bivariate Tensorprodukt-Splines mit Nebenbedingungen