
Power Analysis Tutorial

Manfred Aigner and Elisabeth Oswald

Institute for Applied Information Processing and Communication
University of Technology Graz

Inffeldgasse 16a, A-8010 Graz, Austria
Manfred.Aigner@iaik.at

Elisabeth.Oswald@iaik.at

Abstract. Performing a Differential Power Analysis (DPA) attack re-
quires knowledge in several fields; statistics and cryptography for the
attack itself, programming skills and experience in instrumentation to
build up an automatic measurement system and electronical skills to im-
prove the results. This tutorial provides information on all these topics
on basis of our experience.

1 Introduction

Since increasingly confidential data are being exchanged on electronic way an
ever greater importance is attached to the protection of the data. Where cryp-
tosystems are being used in real applications not only mathematical attacks have
to be taken into account. Hard- and software implementations themselves present
a vast field of attacks. Side-Channel-Attacks exploit information that leaks from
a cryptographic device. Especially one of these new attacks has attracted much
attention since it has been announced. This method is called Differential Power
Analysis (DPA) and was presented in 1998 by Cryptography Research. DPA
uses the information that naturally leaks from a cryptographic hardware de-
vice, namely the power consumption. A less powerful variant, the Simple Power
Analysis (SPA) was also announced by Cryptography Research.

What does a DPA attack require? First, an attacker must be able to precisely
measure the power consumption. Second, the attacker needs to know what al-
gorithm is computed, and third an attacker needs the plain- or ciphertexts. The
strategy of the attacker is to make a lot of measurements, and then divide them
with the aid of some oracle into two or more different sets. Then, statistical
methods are used to verify the oracle. If and only if the oracle was right, one can
see noticeable peaks in the statistics. This vague description of a DPA attack
should be clearified in this article. In section 2, a power model is developed and
related to the statistical methods used in DPA . Thereafter, a DPA attack is
explained on the grounds of the DES. In the third section, a concrete implemen-
tation of the DPA is discussed. The section begins with a C++-model which will
turn out to be useful to verify some countermeasures against DPA attacks. Also
an attack on a 8052-microprocessor implementation is described. In the fourth
section the application of DPA on asymmetric cryptosystems is discussed.



2 Power Analysis Foundations

Almost every digital circuit built today is based on Complementary Metal Oxid
Semiconductor (CMOS ) technology. Therefore it is necessary to understand the
power consumption characteristics of this technology. If a CMOS gate changes
its state, this change can be measured at the Vdd (Vss) pin. The more circuits
change their state, the more power is dissipated. In a synchronous design, gates
are clocked which means that all gates change their state at the same time. Power
dissipated by the circuit can be monitored by using a small resistor Rm in series
between Vdd, (or Vss) and the true source (or ground). The two most essential
parts of the power consumption during a change of a state are the dynamic
charge resp. discharge (appr. 85%) and the dynamic short circuit current (appr.
15%). This is sketched on the example of an inverter (see Figure 1). The output
of each gate has a capacitive load, consisting of the parasitic capacity of the
connected wires and gates of the following stages. An input transition results in
an output transition, which discharges or charges this parasitic capacity, causing
a current flow to Vdd (or Vss). This current is the dynamic charge resp. discharge
current. For further information one should take a look at [21]. By measuring
current flow on Vdd we can detect whether the output changed from 0 to 1 or
not.

Input Output

Vdd

Vss

Fig. 1. Inverter

In differential CMOS logic, every output appears also in its inverted form,
which means a transition always causes charge and discharge on the output and
inverted output. By measuring current on Vdd or Vss one can’t distinguish high
and low transitions, but it is possible to detect whether a transition occured or
not.

Logic with precharge characteristic always charges the output capacity during
a precharge cycle and decharges it during the evaluation cycle, in case that the
output value differs from the precharge value. By observing current flow one
can detect changes of the output node. Precharge logic has much higher power
consumption than differential or standard CMOS logic, because dynamic charge
current appears also in situations where the output value doesn’t toggle.

2



2.1 Power Model

As a result of the previous explanation we can deduce an abstract model of the
instantaneous power consumption of a CMOS circuit. The power consumption
of a circuit at a particular time t is the sum of the power dissipated by all
gates at this time. Of course, when measuring this power dissipation we cannot
prevent the influence of noise. Various noise components have to be considered
such as external noise, intrinsinc noise, quantization noise and algorithmic noise
(see [15]). By the careful use of measurement equipment one can reduce external
noise. Algorithmic noise will be reduced by DPA itself. The other two noise
components should be small compared to the power consumption. We can state
this more formally as :

Simple Power Model. Let t denote the time, and N (t) be a normal distributed
random variable which represents the noise components. Let f(g, t) denote the
power consumption of gate g at the time t. Then a simplified power model for
the power consumption is the function

P (t) =
∑

g

f(g, t) +N (t)

The next step is to relate this model to statistics. If we consider the function
f(g, t) as random variable from an unknown probability distribution, what can
we say about P (t)? If all f(g, t) are randomly and independently drawn from this
probalility distribution then the Central Limit Theorem says that P (t) is nor-
mally distributed. In a DPA attack the attacker divides the power measurements
in two or more different sets and tries to compute the difference between these
sets in order to verify the oracle. As we have related the power consumption
to statistics we can also say that the attacker wants to compute the difference
between the two probability distributions. The methods therefore are discussed
in the next section.

2.2 Hypothesis Testing

If one works with probability distributions it is necessary to have characteri-
zations of these distributions. Well known characteristics are the expectation,
variance or more in general the moments of the distribution. Of course the true
expectation (or true variance) is unknown, so one has to estimate it. The con-
struction of good estimators is one of the main goals in statistics. One can easily
proof that if the Xi are independently, identically distributed random variables,
the statistical mean X̄ and variance S2 are good estimators for the true expec-
tation E(Xi) = µ and the true variance V ar(Xi) = σ2. Common strategies for
constructing estimators are:

– using the empirical moments as estimators for the theoretical moments
– using the Maximum-Likelihood method.

3



In the case stated above one can prove that both strategies lead to the same
estimators, and that these are the best estimators (in the sense that the expected
quadratic deviation to the theoretical moment is the smallest) one can find. We
conclude that we can distinguish probability distributions if we can distinguish
their moments. This is done by using the following test.
T-Test. We consider two independent samplevectors (X1, . . . , Xn) with Xi ∼
N(µx, σ) and (Y1, . . . , Ym) with Yj ∼ N(µy, σ). We test the hypothesis that

H0 : µx − µy = 0 versus H1 : µx − µy �= 0

with the test statistic

T =
X̄ − Ȳ

Sp

√
nm

n+m
∼ tn+m−2

with S2
p = 1

n+m−2 ((n− 1)S2
x + (m− 1)S2

y), S
2
x = 1

n−1

∑n
i=1(Xi − X̄)2 and S2

y =
1

m−1

∑m
j=1(Yi − Ȳ )2.

The principle of the test is, to compute the difference of the distribution means.
One can use a modified variant of the test if the variances are not the same. The
modifications affect the probability distribution of the test function T , but our
experience with DPA shows that it is sufficient to compute T = X̄ − Ȳ , so we
do not consider this in detail. We will refer to this method as mean method in
subsequent sections.

Another possibility is to survey a hypothesis about the probability distribu-
tion itself so one can test

H0 : F (x) = F0(x) versus H1 : ∃x ∈ R : F (x) �= F0(x).

Thereby we estimate the unknown distribution function F (x) by the empirical
distribution function Fn(x). Two tests are used in general, the χ2−Test and the
Kolmogorov − Smirnov − Test. We refer for an explanation of these methods
to one of the various statistic books.

The third possibility is to ask how many influence does the oracle on the
measurements have? If the oracle was correct, then there should be some cor-
relation between it and the measurements. Influence, or dependence is given by
the covariance σxy or correlation ρ(x, y) with

σxy = E(XY )− E(X)E(Y ), ρ(x, y) =
σxy

σxσy.

Remark 1. Let X,Y denote independent random variables, then ρ(X,Y ) = 0.
The conversion does not apply in general, but for normal variables. Again one can
estimate the theoretical covariance and correlation by the empirical moments.
The hypothesis here would be

H0 : ρ = 0 versus H1 : ρ �= 0.

We will refer to this method as correlation method in subsequent sections. From
this explanation it is clear, that the simplest method is to compute the difference
between the means of the sample sets. This is the DPA function we will use for
the attack on the DES .

4



2.3 Differential Power Analysis

In the previous section the foundations for DPA have been explained. Now we
start with the power analysis itself. In the first part of this section we will give
a short review of the DES. Then the construction of an oracle for a known-
ciphertext-attack is explained in this context.

The Data Encryption Standard ([20]) was invented in 1970 by IBM. It has a
Feistel-Structure and consists of 16 rounds:

Li = Ri−1

Ri = Li−1 ⊕ f(Ri−1,Ki),
where f(Ri−1,Ki) = P (S(E(Ri−1 ⊕Ki)), (see Figure 2).

E(R) ..  48 bit K .. 48 bit

S1 S2 S3 S5 S6 S7 S8

+

E

R .. 32 bit

P

f .. 32 bit

S4

Fig. 2. DES round function

R15L15

f+

R16 L16

Final Permutation 

K16

Fig. 3. DES last round

Ki denotes the subkey of the i− th round. The last DES round differs form
the others, because L and R are not exchanged (see Figure 3). The oracle or as
we now call it, selection funtion D makes use of this fact. As we can see in the
Figure 3, R15 = L16. The subkey splits up in eight blocks, one for every sbox
(see Figure 2). Therefore we specifiy one target sbox for which we list all possible
(= 26) input values. We will refer to such an input value as subkeyblock. As
assumed above we know the ciphertexts, and so we can calculate the value of
some of the bits in L15 for every possible subkeyblock. We select one of these bits
as our target bit. The value of the target bit is our selection function D. If D = 1
the corrsponding power measurement will be put in sample set S1, if D = 0 it
is classified to S0. This procedure is repeated for a lot of measurements, so at
the end we have, for every ciphertext and all subkeyblocks, a classification of
the corresponding measurement. Let n denote the amount of ciphertexts, resp.
measurements. Then we can write all our classifications in a 26 × n matrix.
So every line represents a possible key for the target sbox, and every column
represents the classification of one ciphertext resp. measurement.

For the DPA attack we go through all lines and build the two sample sets S0
and S1. Then we compute the mean (pointwise) of the samples in the sets, M0

5



and M1, and compute the difference. For the correct subkeyblock there must be
a peak in the trace of the difference.

3 Practical Implementation

This section considers implementation issues. Let’s start with some SPA ex-
periments to familiarize ourselfs with the measurement equipment. SPA tries to
identify single instructions in the power trace without statistical methods. It can
be used to detect the portions in the powertrace where the target bit for DPA
is manipulated and it can be used to develop a good measurement setup. We
used a 8051 compatible ATMEL 89S8252 microcontroller for our experiments.
In the first stage it is useful to perform simple operations on the microproces-
sor and play around with the various possibilities for the measurement setup.
We execute a number of mov addr,#0 and mov addr,#255 instructions and
measure the power consumption. The aim of this experiment is to optimize the
measurement setup of the microcontroller board. It is easy to see that noise on
the power supply reduces the precision of measurements seriously. The first step
to improve our setup is reducing noise on the power supply. The next step is
to choose the right value for resistor Rm between global supply and the supply
pin of the controller across which we measured the current profile. Bigger Rm

would mean higher voltage swing across the resistor, which would be easier to
measure. One has to keep in mind that this voltage drop across Rm reduces the
actual supply voltage of the controller which reduces the power consumption.
Therefore it is clear that big values for Rm do not directly lead to the desired
effect of higher voltage swing. Power consumption itself also depends heavily on
the amount of the supply voltage, so to obtain better results one should run the
device at the highest supply voltage possible.

A second effect of the reduced supply voltage has to be taken into account:
Input protection circuits of CMOS pads include clamp diodes which turn on,
when voltage on the input pad is higher than the circuit’s Vdd. Introducing Rm

leads to reduced Vdd, which makes these diodes conductive when the input value
is high and voltage drop on Rm is big. This means the internal circuit is supplied
by input current from the input pads, which is not measured via Rm. Smaller
values of Rm reduce this effect. Another way to get rid of this effect is to make
the global supply voltage bigger than the high level, but this would reduce the
high noise margin of the circuit.

Although the CMOS circuit still works with a big Rm the current profile
is more influenced by a bigger resistor. We measured nearly the same voltage
swing on Rm values for Rm = 1Ω and Rm = 20Ω.

Since power consumption of CMOS logic arises mostly around clock transi-
tions, the current profile has high frequency components, which lead to voltage
overshoot on Rm. To reduce this overshoot, a small fast capacitor should be
connected parallel to Rm. The best way to find out the optimal value of this
capacitor is to try different devices and decide after some measurements if the
desired effect has happened. The input capacitance and resitance of the oscillator

6



probe used for measurements has also a big impact on this effect, so use an active
differential probe with high input resistance and very low input capacitance.

Fig. 4. MOV 0 versus MOV FF

After reducing noise of the power supply, finding the best resistor Rm and
capacitores Cm it is possible to detect the 2-bit differences of two consecutive
mov-instructions of our microcontroller board on the oszilloscope.

See Figure 4 for the current profile of two mov commands. Graph A and B
show each the profile of a mov command while C is the zoomed difference of
these two samples. It’s even easier to detect differencies of distinct commands.
With a good setup we can even find out if the branching condition of a JNZ or
JZ command was fulfilled or not.

3.1 C++-Model

The next step is to implement a DPA attack. We do this on a DES C++-model
first. For the functional verification of the implementation of an algorithm, often
C++ is used before the algorithm is written in a hardware description language
(HDL). In the top-down design flow one splits up the (hardware) module in
submodules. The functionality of each of the submodules and the connections
between them can be defined in the C++-model too. Finally one can produce
cycle-tuned test vectors to verify the HDL-model.

3.1.1 Modelling the Power Consumption in the C++-Model. If one has
a bit-level model of a hardware modul, it is fairly easy to model the dynamic
charge (discharge) of the capacitances too. It is sufficient to assert that the

7



change of state of a bit implicates current flow in the type of logic used. After all
bits of a cycle are processed, a variable holds the value of the instantaneous power
consumption. In the following example this procedure is sketched for standard
CMOS logic and differential CMOS logic.

extern int i_stdcmos,i_diffcmos;
void FLIP_FLOP::sim(ONE_BIT rst, ONE_BIT D, ONE_BIT phi)
{

if (phi== LOW) {
if (rst==HIGH) {

Q_buf = LOW;
} else {

Q_buf = D;
}

} /* End if (phi == LOW) */

if (phi == HIGH) {
if (Q==LOW && Q_buf==HIGH) { // i on Vdd for standard CMOS logic

i_stdcmos++;// FF goes from LOW -> HIGH .. i on Vdd
}
if (Q != Q_buf) {// i on vdd for differential cmos logic

i_diffcmos++;
}
Q = Q_buf;

} //End if (phi == HIGH)
}

Fig. 5. Flip-Flop C++-model

What are the advantages when proceeding this way? When making hard-
ware implementations writing a C++-model first is part of the usual design flow.
Therefore one should get as many information out of this model as possible,
including DPA related information. Second, real hardware implementations are
of high costs. So it doesn’t make sense to design for every CMOS type a real
chip and then to prove DPA resistance. Third, such a power model gives one a
first hint how difficult a real DPA attack will be. It is plain to see that one will
need at least as many samples in reality as in the C++-model.

With this model we did some DPA experiments on the various CMOS types.
The standard CMOS logic was used as a reference implementation to prove the
correctness of the attack. On the differential CMOS logic the DPA attack did not
work as presented; after a slight modification on the selection function, DPA was
successful again. Adding precharge property could accomplish DPA resistance.
Other types of countermeasures (see [9], [3]) suggest to conceal the targetbits
with the aid of some function that represent bits without having their actual
value. This type of countermeasures can also be tested easily on a C++-model.

3.2 DPA on a 8052 DES Implementation

For an easy DPA attack it is important to reduce noise wherever possible. There-
fore we assembled a board with an 8-bit Atmel microcontroller. Because of the

8



8-bit architecture low algorithmic noise may be expected. The DES implemen-
tation we use is straightforward, but without grave design problems concerning
SPA (e.g. no branches depending on key bits etc.). A block in the internal mem-
ory called Key is used to store the shifted key. Another block called Round
stores intermediate values. The sboxes are in the code memory. BL and BR, the
results of the rounds, reside also in the internal memory. For a DES round the
key is first shiftet in the Key memory block, and then the result of PC2 is put
in Round. The expansion takes its input from BR and holds its output in the
accumulator. The result of the following xor and the sbox substitution result is
stored in Round. P permutation output values are stored in the Temp memory
block. Finally, the result is written to BR after its previous value was copied to
BL.

GPIB Bus

RS232 Trigger

V(R)

8252 Board

Fig. 6. DPA Setup

The measurement setup is sketched in Figure 6. Data is written from a PC via
the RS232 to the 8052-board where the encryption is performed. The board also
sets the trigger for the digital oszilloscope which is connected via the GPIB-bus
to the PC. For our experiments we use an ordinary Intel Pentium II with 128
MB RAM and two 3 GB harddisks, where all software and measurement data
is stored. Our analysis software is written in C++ as well as in Matlab, which
we primarily use because of its simplicity when visualizing the measurements
and DPA results. Because of our SPA experiments we decided to trigger first on
the mov instruction in round 15 where the result of round 14 is stored to L15.
We identified the corresponding code segment and set an appropriate trigger.
Because of the exact trigger signal we can make very precise measurements for a
very short time period. This results in very small measurement samples for faster
DPA computation. We can test more than one subkeyblock per second. With
our best setup we need less then 200 samples to identify the correct subkeyblock.

9



0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

time

subkeyblock : 110000

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

time

subkeyblock : 101110 

Fig. 7.

Figure 7 shows a typical result of this experiment. As target bit we used bit 3
of sbox 4. The correct value for the subkeyblock shows similar characteristics as
the mov plot from our previous experiments. Sampling the power consumption
during the last round, or during the complete DES-computation leads to lower
measurement resolution, because memory of the digital oszilloscope is limited.
Lower measurement resolution of the power sample leads to a higher amount of
neccesary measurements to identify the correct subkeyblock. We looked therefore
for other classifications methods of our DPA results. It is interesting not only to
look for peaks in the time domain but also in the frequency domain.

10



0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4 Power Spectral Density : 110000

Fig. 8.

Figure 8 shows the power spectral density for the correct subkeyblock. The
dominating peak in the low frequency region shows exactly the base frequency
of the DPA-burst in the time domain (Fig. 7). This spike (as the burst) only
appears in the sample for the correct subkeyblock, that means it is very easy to
distinguish the correct subkeyblock from the others in the frequency domain.

4 DPA and Public Key Cryptography

Also public key cryptosystems are vulnerable to DPA or SPA attacks. Specifi-
cally modular exponentiation as used in RSA and point mulitplication as used
in ECC are investigated in this section. The two different statistical methods
described in section 2.2 give two different approaches for a DPA attack on these
cryptosystems. First we briefly review the encryption functions of the two cryp-
tosystems.

In RSA, one has a public key (e, n) and a private key d = dn−1dn−2 . . . d0.
When creating an encrypted message C one has to compute C = P e mod n.
Decryption is done by P = Cd mod n. The modular exponentiation is usually
done by the square-and-multiply algorithm. The ECC scheme uses as its encryp-
tion function the scalar multiplication of a point P on the elliptic curve. The
decryption requires the computation of dP where d = dn−1dn−2 . . . d0 is the se-
cret parameter. The scalar multiplication is done by the double-and-add method
which works similar to the square-and-multiply algorithm. Both methods (they
will be refered to as the binary algorithm in subsequent sections) are sketched
in Algorithm 1 where ∗ denotes the group operation, which is the multiplication
for RSA and the addition for ECC .

Multiplication and squaring can be implemented to produce the same power
traces, but this is much more difficult for point addition and point duplication.
It is clear that in order to be SPA resistant, one must prevent data depending
branches. A simple modification of Algorithm 1 is Algorithm 1′ where the “if”
statement has been avoided. This solution is of course more cost expensive.

11



Algorithm 1

X = X
for i = n − 2 downto 0

X = X ∗ X
if (di == 1) then

X = X*M
return X

Algorithm 1’

X[2] = M
for i = n − 2 downto 0

X[0] = X[2] ∗ X[2]
X[1] = X[2] ∗ M
X[2] = X[di]

return X[2]

Elliptic curve subtraction has the same cost as addition because −P (x, y) =
P (x,−y). The double-and-add algorithm can be improved with the addition-
subtraction method. The problem of computing dP with the fewest number of
elliptic curve operations is equivalent to find the shortest addition-subtraction
chain [19].

4.1 Attacking the secret parameter with the mean method

It is assumed that the attacker has full control over the cryptographic device
that performs the binary algorithm. This includes that the attacker can make
as many measurements as needed.

4.1.1 Single-Exponent, Multiple-Data Attack. The SEMD attack [16]
compares the power signal of an encryption operation using a known parameter
to a power signal using an unknown parameter. The attacker can learn where
the two signals differ and thus learn the unknown (secret) parameter. Due to
noise components, direct comparisons of power signals are unreliable, thus DPA
techniques are applied. One computes n random values with the secret and the
known parameter. The average signals are calculated and subtracted as in the
mean method . The portions of the DPA signal that depend on the (random)
data will be wiped out by the averaging and subtraction. The portion of the
DPA signal that is dependend on the paramter will average out to two different
values depending on the performed operation. So the portions in the DPA signal
that are ≈ 0 are data dependend or the operations in the binary algorithm agree.
The other portions indicate that the operations in the binary algorithm differ.

4.1.2 Multiple-Exponent, Single-Data Attack. It is assumed that the at-
tacker can encrypt a constant (maybe unknown) value P with parameters chosen
by the attacker. One measures mean power consumption Sm of the encryption
of the value P . Then the bits of the secret parameter are attacked successively.
To attack the ith bit, the attacker first guesses that the ith bit is a 1 and then
a 0 and starts the encryption for both guesses. We assume that the attacker has
already learned the first i − 1 bits. If the attacker guesses bit i correctly the
power trace will agree to bit i with the power trace Sm. If the guess was wrong,
one should see a difference in the corresponding power trace [16].

12



4.1.3 Zero-Exponent, Multiple-Data Attack. The ZEMD attack [16] as-
sumes that one can encrypt many random messages using the secret paramter.
The attacker additionally needs to be able to compute intermediate results of the
binary algorithm. The attacker learns the secret parameter bitwise. One guesses
the ith bit of the secret parameter and creates a DPA power signal. This is done
by encrypting some random input P and measuring its power consumtpion. The
power signals from the guesses can be partitioned by their Hamming weight and
the average signals are subtracted. If the guess was correct, one can see the DPA
bias in the correct partitioning.

4.2 Attacking the secret parameter with the correlation method

When using algorithm 1′ the mean method will be not succesful because there is
no difference in the sequence of instructions. But if one knows the representation
of the computed points one can again mount a succesful attack [5]. At step i
the processed point X depends only on the first bits dl−1 . . . di of the secret
parameter d. When X is processed, power consumptions is correlated to the bits
of X. No correlation will be observed if the point is not computed. The second
most significant bit can be learned by calculating the correlation between the
power consumption and any specific bit of 4X. If dl−2 = 0, 4X is computed
during the binary algorithm. Otherwise if dl−2 = 1, 4X is never computed and
thus there will be no correlation observed. The other bits can be recursivly
recovered in the same way.

4.3 Countermeasures

The mechanism described in [12] can be used to prevent this types of power
analysis techniques. Message blinding would prevent the MESD and ZEMD at-
tack, but not the SEMD attack. Therefore one would also have to blind the
secret parameter. When implementing ECC schemes there is one more coun-
termeasure. Projective coordinates [14] can be used to randomize the point X.
Before each new computation of the scalar multiplication dX, the projective
coordinates of X are randomized, this makes an attack infeasible since it is not
possible to predict any bit of x, see [5]. As pointed out in [15], another way could
be to randomize the binary algorithm. One could, for example, randomize the
addition-subtraction chains in [19].

5 Resuming

The various components of a DPA attack are discussed in this tutorial. On the
grounds of the power consumption characteristic of CMOS logic we develop a
simple power model. This model is then linked to statistics in order to relate the
powerful methods of hypothesis testing to DPA. An example of a DPA oracle
(or selection function) is given on the basis of the DES algorithm. Afterwards
we describe a DPA implementation with the simplest statistical method and the

13



developed selection function. First we explain how to improve the measurement
setup and how to verify the automatic analysis by the use of a C++-model. Second
we illustrate our measurement system and give hints on how to interpret and
characterize the DPA results. The last section covers DPA attacks on public key
cryptosystems. We explain briefly how the two statistical methods developed in
the first section can be applied to RSA and ECC cryptosystems.

Following these hints it should be possible to make a DPA attack on such
a software DES implementation with less then 200 measurements. Our refer-
ence list includes not only articles used for this tutorial, but also most actually
available literature on this topic.

References

1. E. Biham, A. Shamir, Power Analysis of the Key Scheduling of the AES Candidates
Second AES Candidate Conference, Rome, March 1999, pp 115-121.

2. S. Chari, Ch. Jutla, J. Rao, P. Rohatgi.A Cautionary Note Regarding Evaluation of
AES Candidates on Smart-Cards. Second AES Candidate Conference, Rome, March
22-23,1999, pp 133-147.

3. S. Chari, Ch. Jutla, J. Rao, P. Rohatgi.Towards Sound Approaches to Counter-
act Power-Analysis Attacks, Proceedings of Advances in Cryptology-CRYPTO’99,
Springer-Verlag, 1999, pp.398-412

4. C. Clavier, J.-S. Coron, N. Dabbous, Differential Power Analysis in the presence
of Hardware Countermeasures, to appear in Proceedings of Workshop on Crypto-
graphic Hardware and Embedded Systems 2000

5. J.-S. Coron, Resistance against differential power analysis for elliptic curve cryp-
tosystems, Workshop on Cryptographic Hardware and Embedded Systems, Lecture
Notes in Computer Science, vol. 1717, Springer,1999, pp.292-302

6. J.-S. Coron, L. Goubin, On Boolean and Arithmetic Masking against Differential
Power Analysis, to appear in Proceedings of Workshop on Cryptographic Hardware
and Embedded Systems 2000

7. J.-S. Coron, P. Kocher, D. Naccache, Statistics and Secret Leackage, to appear in
Proceedings of Financial Cryptography, Springer-Verlag, February 2000

8. P. Fahn, P. Pearson. IPA: A New Class of Power Attacks, Proceedings of Workshop
on Cryptographic Hardware and Embedded Systems (CHES), Springer-Verlag’s
Lecture Notes in Computer Science (LNCS), 1999

9. L. Goubin, J. Patarin.DES and Differential Power Analysis. Workshop on Cryp-
tographic Hardware and Embedded Systems, Lecture Notes in Computer Science,
vol. 1717, Springer 1999, pp 158-172.

10. M. A. Hasan, Power Analysis Attacks and Algorithmic Approaches to Their Coun-
termeasures for Koblitz Cryptosystems, to appear in Proceedings of Workshop on
Cryptographic Hardware and Embedded Systems 2000

11. P. Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and
Related Attacks, Proceedings of Advances in Cryptology-CRYPTO’96, Springer-
Verlag, 1996, pp. 104-130.

12. P. Kocher, J. Jaffe and B. Jun, Differential Power Analysis, Proceedings of Ad-
vances in Cryptology-CRYPTO’99, Springer-Verlag, 1999, pp. 388-397

13. R. Mayer-Sommer, Smartly Analyzing the Simplicity and the Power of Simple
Power Analysis on Smartcards, to appear in Proceedings of Workshop on Cryp-
tographic Hardware and Embedded Systems 2000

14



14. A. J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Pub-
lishers, 1993

15. T.S. Messerges, E. A. Dabbish and R. H. Sloan, Investigations of Power Analysis
Attacks on Smartcards, Proceedings of USENIX Workshop on Smartcard Technol-
ogy, May 1999, pp. 151-61.

16. T.S. Messerges, E. A. Dabbish and R. H. Sloan, Power Analysis Attacks of Modular
Exponentiation in Smartcards, Workshop on Cryptographic Hardware and Embed-
ded Systems, Lecture Notes in Computer Science, vol. 1717, Springer,1999.

17. T. S. Messerges, Using Second-Order Power Analysis to Attack DPA Resistant
Software, to appear in Proceedings of Workshop on Cryptographic Hardware and
Embedded Systems 2000

18. A. Shamir,Protecting Smart Cards from Passive Power Analysis with Detached
Power Supplies, to appear in Proceedings of Workshop on Cryptographic Hardware
and Embedded Systems 2000

19. F. Morain, J. Olivos. Speeding up the computation on an elliptic curve using
addition-subtraction chains, Inform. Theory Appl. 24 (1990), 531-543.

20. National Bureau of Standards, Data Encryption Standard, U.S. Department of
Commerce, FIPS pub. 46, Jannuary 1977.

21. N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley
Publishing Company, 1993.

15


