

Security as Part of Day-To-Day Activities

- Internet
- Passwords
- Wireless Communication
- WLAN
- Bluetooth
- Cell Phones
- RFID
- Biometrics
- Passports
- Etc.

Status

- Bluetooth:
- Eavesdropping
- Impersonation
- Location Privacy
- Weak Encryption

- Bluebugging, bluesnarfing, etc.
- WLAN:
- WEP (Wired Equivalent Privacy)
- Weak Key Management
- Problem with Integrity Protection, etc.
- State-of-the-Art: WPA2 (Wi-Fi Protected Access)

Authentication

- Something you know (e.g., password)
- Something you have (e.g., hardware token)

- Something you are
(e.g., biometrics)

Typical Security Questions

- Make of your first car
- Mother's maiden name
- City of your birth
- Date of birth

- High school you graduated from
- First name of your best friend
- Name of your pet

Some Data Mining...

- Make of your first car?
- Until 1998, Ford has $\mathbf{2 5 \%}$ market share (US market)
- First name of your best friend?
- 10\% of males named James (Jim), John, or Robert (Bob or Rob)

- Name of your first / favorite pet?
- Top pets names are listed online

Another Problem: Users Forget Answers

- Name of the street you grew up on?
- There may have been more than one
- First name of your best friend?
- Friends change
- City in which you were born?
- NYC? New York? New York City?

Manhattan? The Big Apple?

Intuition

Preference-based Authentication:

- Preferences are more stable than long-term memory (confirmed by psychology research)
- Preferences are rarely documented (in contrast to city of birth, brand of first car, etc.)

Under the Hood

- Small reward for each correct answer
- Large penalty for each incorrect answer
- Comparison to a suitable threshold
- Amounts for reward and penalty depend on the uncertainty of the answers

New Interface: Authentication

	Like	Dislike
Fashion	0	
Going to political events	0	0
Going to flea markets	0	0
Doing yoga	0	0
Country music	0	0
Casino gambling	0	0
Watching golf	0	0
Painting		

Adversary Model

- Naïve attack
- The adversary randomly selects likes and dislikes during the authentication
- Strategic attack
- The adversary knows the distribution of answers (like-rates and dislike-rates)
- The adversary selects a combination to maximize his success rate

Security / Usability

- False negative / positive error rates
- Requires finding of suitable parameters to balance and minimize error rates
- Amount of penalty for incorrect answers/amount of reward for correct answer
- Threshold to pass the authentication

Security: User Study

Next Steps?

- Additional user studies
- Other attacker models
- Social networks

Biometrics: Problem

- "False positive" und "false negative"

Alternative Construction: Vector Spaces

Choose $\left\{\mathbf{v}_{i}^{0}, \mathbf{v}_{i}^{1}\right\}_{1 \leq i \leq m} \subset \mathbf{Z}_{q}^{m_{\text {Such }}}$ that
$-\operatorname{det}\left(\mathbf{v}_{1}{ }^{0}, \ldots, \mathbf{v}_{m}{ }^{0}\right) \bmod q=\operatorname{hpwd}$

- Choose unimodular matrix $U=\Pi U^{\prime} \Pi^{-1}$ where U^{\prime} is upper triangular matrix with diagonal entries 1 , Π permutation matrix.
- Determine second set of vectors as:
$\left(\mathbf{v}_{1}{ }^{1}, \ldots, \mathbf{v}_{m}{ }^{1}\right)=\left(\mathbf{v}_{1}{ }^{0}, \ldots, \mathbf{v}_{m}{ }^{0}\right) * U \bmod q$

Logging In

1) User enters pwd

- decrypt instruction table

2) For each φ_{i}

- if φ_{i} measured $<t_{i}$, use point in left column of i-th row
- if φ_{i} measured $>t_{i}$, use point in
right column of i-th row

3) Use values to reconstruct hpwd
4) Verify hpwd

$f(1)$	$f(2)$
$f(3)$	$f(4)$
$f(5)$	$f(6)$
$f(7)$	$f(8)$
$f(9)$	$f(10)$
$f(11)$	$f(12)$
$f(13)$	$f(14)$
$f(15)$	$f(16)$
 hpwd	

Dictionary Attacks

- Attacker guesses passwords, decrypts table with each
- For each incorrect guess, the resulting table is random
- For the correct guess, the resulting table
is the correct one
- Key question: How efficiently can an attacker distinguish these cases?

Approach to Security Analysis

- Represent the choice for value of feature i as function of a Boolean variable:

$$
\varphi_{i}\left(x_{i}\right)=\text { if } x_{i} \text { then } \mathrm{v}_{\mathrm{i}}^{0} \text { else } \mathrm{v}_{\mathrm{i}}^{1}
$$

Expand determinant computation as Boolean formula.

- Finding zeros of polynomial representing the determinant

$$
\operatorname{det}\left(\mathbf{v}_{1}^{0}-\mathbf{v}_{1}^{1},\left(1-x_{2}\right) \mathbf{v}_{2}^{0}+x_{2} \mathbf{v}_{2}^{1}, \ldots,\left(1-x_{m}\right) \mathbf{v}_{\mathrm{m}}^{0}+x_{m} \mathbf{v}_{\mathrm{m}}^{1}\right)
$$

- Connection to quadratic cryptanalysis (security evaluation of AES)

RFID I

- RFID = Radio Frequency IDentification Tag
\longrightarrow Modern Barcode:

Source: RSA Security

Unique Identification of Product Type

Unique Identification of a Specific Product

- Can be read "silently" (range of few inches to a few meters)

Privacy: Some Food for Thought

- If asked, do you provide the cashier with your phone number?
- Do you use consumer cards?
- Do you put long lists of email addresses in the to/ cc fields?
- Do you use Google services?
- Is your phone number listed?
- Do you do customer surveys and provide personal information?
- What information do you provide on your webpage/ on your blog?
- What information do you provide as part of social networks?
- ...

Privacy: Some Food for Thought

Remember...

- Don't put in an email what you would not put on a postcard!
- Assume that what you post on the Web will be out there once and forever! The Web does NOT forget!
- Think about PRIVACY every time someone requests some personal information from you!

