
Information Leakage Attacks Against Smart Card
Implementations of Cryptographic Algorithms and

Countermeasures

A Survey

Erwin Hess1, Norbert Janssen2, Bernd Meyer1, and Torsten Schütze1

1 Siemens AG, Corporate Technology, 81730 München, Germany, Email:
{erwin.hess|bernd.meyer|torsten.schuetze}@mchp.siemens.de

2 Infineon Technologies AG, CC PD 1, 81617 München, Germany, Email:
norbert.janssen@infineon.com

Abstract. Every practical implementation of a cryptographic algorithm represents a physi-
cal device possessing potential side channels not covered by the security models of theoretical
cryptography. Hence, even provable secure cryptographic algorithms may be attacked due
to leakage of information. Smart cards and security ICs are often used as tamper-proof secu-
rity devices. To prevent an attacker from exploiting easily accessible information like power
consumption, running time, input-output behavior under malfunctions caused, i. e., by irreg-
ular clocking, radiation, power peaks, special precautions have to be taken. Commonly used
countermeasures against information leakage are the reduction of the signal-to-noise ratio
using special implementation techniques for hardware and software and the decorrelation of
secret internal data from the channels observable by an attacker.
In this contribution we survey the basic concepts of known attacks based on information
leakage, i. e., timing attack, differential fault analysis, SPA, and DPA, and the countermea-
sures proposed in the literature. These methods comprise hardware design techniques and
the design and implementation of modifications of cryptographic algorithms.

1 Introduction

In traditional cryptography, cipher systems have been analyzed by modeling cryptographic algo-
rithms as ideal mathematical objects. If any attacker is able to find any sophisticated strategy,
this would lead to a low-complexity algorithm for the solution of a problem commonly believed to
be intractable. This can be shown by complexity-theoretical reductions. Trust gained in this way
is independent of the concrete implementation of a cryptographic algorithm.

On the other hand, any practical implementation represents necessarily a physical device with
additional properties not covered by the mathematical model. This allows an adversary to break
even provably secure algorithms by manipulating the device in an unintended way. In general,
the methods for these invasive attacks rely on special knowledge and are done with the help
of costly equipment [2, 1, 26]. This was considered to be a serious danger only for classified or
military applications. Defenses against attacks like probing [19], re-engineering, and memory read-
out techniques [26] etc., comprise protecting shields and chip coatings, top layer metal grids, sensors
to defend glitch attacks against clock and voltage supply, and are a common part of todays smart
cards.

During the last four years, a new class of attacks became public [5, 3, 22, 23]. These attacks
exploit easily accessible information like power consumption, running time, and input-output be-
havior under malfunctions, and can be mounted by anyone using low-cost equipment. The adver-
sary targets specific implementation details which may reveal information about secret data or
the internal state of a device. These so-called side-channel attacks amplify and evaluate the leaked
information with the help of statistical methods and are often much more powerful than classical

cryptanalysis. Examples show that a very small amount of side-channel information is enough to
completely break a cryptosystem [21].

In this paper, we give an overview of the existing side-channel attacks presented in the lit-
erature. In Section 2, we survey the basic principles of simple power analysis, differential failure
analysis, timing attacks, and differential power analysis. We give examples for the vulnerabilities
of specific algorithms and implementations. In Section 3, we discuss possible countermeasures
proposed in the literature.

2 Principles of attacks

2.1 Simple power analysis—SPA

Simple Power Analysis (SPA) is the first developed—but also the least powerful—of the informa-
tion-leakage attacks described in this paper. It involves the direct interpretation of power con-
sumption measurements collected during cryptographic operations.

Messerges et. al. [28], for example, present actual results from monitoring power signals. They
describe two different types of information which can be derived from the activity on the data
bus: Hamming weight information (leakage occurs, for example, in a precharged bus design) and
transition count information (number of switching gates that are driven by the data bus).

The SPA attack can be performed with the following steps: first, a single encryption is run.
The power consumption data of the device are recorded and, finally, the key bits can either directly
be seen or easily be computed. If an attacker can determine where certain instructions are being
executed, it can be relatively easy to extract useful information. SPA attacks can, for example,
be used to break simple RSA implementations by revealing differences between multiplying and
squaring, see the square-and-multiply algorithm in Section 2.3. The processing of 0 and 1 bits
of the secret exponent can directly be recognized in the power trace. Messerges et. al. [28] give a
detailed account on how to break DES using the Hamming weight data of the key bytes.

In SPA attacks, the aim is essentially to guess from the power trace which particular instruction
is being executed at a certain time and what values the input and output have. Therefore, the
adversary needs an exact knowledge of the implementation to mount such an attack.

2.2 Differential fault analysis—DFA

Differential fault analysis exploits weaknesses of the robustness of cryptographic algorithms under
malfunctioning. Many cryptographic systems leak information which can be used to reconstruct
secret keys hidden in a tamper-proof device if computational errors affect the computation. The
adversary can (possibly repeatedly) compute correct and perturbed results, compare them, and
try to deduce the keys.

Mainly two different fault models for DFA attacks are discussed in the literature: in the tran-
sient fault model or random register fault model it is assumed, that an attacker can flip a single
bit (or a small number of bits) of a value contained in a register. The moment at which the bit
flips and the position of the memory cell of the changed bit are randomly distributed among
the overall computation time and memory locations. Transient faults can, for example, be caused
by irregular clocking, radiation, or peaks in the power supply voltage. Transient faults change
only data stored in volatile memory, but do not change or destroy the device or data stored in
non-volatile memory. In the persistent fault model the adversary is allowed to change a single bit
(or a small number of bits) in non-volatile memory (i. e., erasing EEPROM cells using ultraviolet
light or X-rays, setting or clearing EEPROM cells using micro-probing, destroying ROM cells or
introducing stuck-at faults using laser cutters) or to change the device (i. e., cutting wires).

In [5] the authors describe several attacks against public-key cryptosystems in the transient
fault model: implementations of RSA which use chinese remaindering (CRT) to speed up signing
may be completely broken if an error occurs in one of the exponentiation steps for each prime
factor of the modulus. In this case, the difference between the correct result E and the faulty

2

result Ẽ is divisible by a prime factor of the modulus N with high probability, hence, computing
gcd(E − Ẽ,N) factors the modulus. Even in implementations of RSA without CRT, the secret
exponent can be deduced from transient faults. If the error affects one of the last iterations of the
exponentiation, see Section 2.3, it is possible to find the exact position of the flipped bit and part
of the secret key by exhaustive search. The Fiat-Shamir and Schnorr-identification schemes can
be attacked with register faults while the prover is waiting for a challenge.

Biham and Shamir describe in [3] how the DES encryption algorithm can be broken using
transient faults. In addition, they introduce a persistent fault model which assumes that an attacker
can erase an arbitrary bit of the key. This model is justified by the asymmetric behavior of memory
cells: if the fault is induced by external radiation, then the charges are more likely to leak out
of the gate than to be forced into the gate. Biham and Shamir propose to compute a sequence
of encryptions with keys having successively erased bits. This sequence allows one to find the
positions and the values of the erased bits and, thus, to reconstruct the secret key in reverse. The
attack is applicable, too, if the cryptosystem is completely unknown to the attacker. Biham and
Shamir show several variations of these attacks under the assumption that the attacker is able to
cut wires or to destroy gates.

The transient and persistent fault models have been criticized for being purely theoretical. In
[2] it is argued that a random one-bit error would be more likely to crash the processor of the
tamper-proof device or yield an uninformative error than to produce a faulty ciphertext. Instead,
glitch attacks which have already been used in the pay-TV hacking community, are presented in
[2, 1, 26] as a more practical approach to non-invasive (differential) fault analysis. The attacker
applies a rapid transient in the clock or the power supply to the chip. Due to different delays in
various signal paths, this affects only some signals and by varying the parameters of the attack, the
CPU can be made to execute a number of wrong instructions. By carefully choosing the timing of
the glitch, the attacker can read out secret data, by-pass security checks, or weaken cryptographic
algorithms by DFA attacks.

2.3 Timing attacks

The execution time of cryptographic algorithms often shows slight differences dependent on the
input of the algorithm. This data dependent variation is due to performance optimization, con-
ditional statements, handling of special cases, cache misses, and a variety of other causes. Since
an adversary can easily measure the execution time of a tamper-proof device like a smart card
with high accuracy, the dependence between public inputs, secret data hidden in the device, and
changes in execution time can be used to derive valuable information about the secret data [11,
22, 20, 25, 17, 18]. In the following, we describe the principles of timing attacks according to [11]
and [22].

In order to mount a timing attack, it must be possible to start repeatedly the device with
different inputs (randomly chosen or carefully computed by the attacker) and measure the exe-
cution time. During the experiments, the measured timings must be reproducible (at least up to
a small error bound). For most attacks described in the literature, the adversary needs to have
detailed knowledge about the cryptographic algorithm, its implementation, and the reasons for the
variations of the execution time. To be more specific, consider the following square-and-multiply
algorithm for modular exponentiation which is the basis of many public-key cryptosystems (like
RSA, ElGamal, Diffie-Hellman):

Input: basis b, exponent e = (e1, . . . , e`)2, and modulus m
Output: c = be mod m

1) c← 1;
2) for i← 1 to ` do
3) c← c2 mod m;
4) if ei = 1 then c← c · b mod m; fi
5) endfor

3

We denote by t(y, b1, . . . , bk) the execution time of the first k iterations of the for-loop for a
given input y and exponent bits b1, . . . , bk. Assume that an attacker has already reconstructed the
first k bits e1, . . . , ek of the secret exponent e. Using his knowledge about the implementation of
the algorithm, he can calculate the execution time t(y, e1, . . . , ek) of the first k iterations. If we
subtract this value from the total execution time t(y, e1, . . . , e`) of the exponentiation measured
by the attacker, we get the execution time T (y) of the last `− k iterations of the loop

T (y) = t(y, e1, . . . , e`)− t(y, e1, . . . , ek).

Under the assumption that ek+1 = 1, the attacker partitions the set of inputs into a set Y1 of
inputs which result in high execution time for the multiplication in step 4 in iteration k + 1, and
a set Y0 of inputs which result in low (or normal) execution time for this multiplication. The
distinction between high and low (or normal) execution time depends obviously on the weaknesses
of the implementation under attack (see the description of example attacks below). If inputs
are randomly sampled from the sets Y0 and Y1 we get two random variables T (Y0) and T (Y1)
for the execution time of the last ` − k iterations. If we assume further that the probabilities
that a randomly chosen input results in high execution time are not significantly correlated for
subsequent multiplications of the exponentiation (including squarings from step 3), an attacker
can make the following observation: if ek+1 = 0 then it should make no difference for the average
running time of the last `− k iterations whether the input was chosen from Y0 or Y1. If ek+1 = 1
then for most samples from Y1 the running time should be greater than the time for samples
from Y0. This means, if ek+1 = 0, the statistical properties of the random variables T (Y0) and
T (Y1) are expected to be very similar. For the case ek+1 = 1 there should exist a difference in
the distributions of the random variables T (Y0) and T (Y1) which can be noticed by an adversary
doing several measurements using random samples from Y0 and Y1 and applying a statistical test.

In [11] the authors give a detailed description of timing attacks against exponentiation using
Montgomery’s representation of the operands. In this attack the variation of the running time
is due to a last subtraction of the modulus which has to be done if the result of the modular
multiplication is out of range. Essentially the same reduction step in an optimized finite field
multiplication is the basis for an attack against an insecure implementation of AES candidate
Rijndael in [25].

A more general type of timing attack which does not need a partition of the inputs according
to a particular delay of the execution time is described in [22]: using the already reconstructed k
bits e1, . . . , ek of the secret exponent e the attacker can compute two random variables

Tb(Y) = t(Y, e1, . . . , e`)− t(Y, e1, . . . , ek, b), where b ∈ {0, 1},

dependent on the next unknown bit b of the exponent. Under the assumption that the iterations of
the exponentiation algorithm are sufficiently stochastically independent, the variance of Tb(Y) is
expected to decrease for a correct guess of bit b and to increase otherwise. With randomly chosen
inputs y ∈ Y it is possible to approximate the variance of Tb(Y) and, thus to compute the next
unknown bit of the exponent. Note that it is not necessary for the attacker to know the reasons
for the variations of the execution time.

A completely different method for a timing attack against the block cipher RC5 is described
in [17]: the security of RC5 relies on the usage of data dependent cyclic rotations in its round
function. Under the assumption that the execution time of a cyclic shift is proportional to the
number of rotated bit positions and that rotations of different rounds are sufficiently independent,
it is shown in [17] that the total amount of rotations during an encryption is correlated with the
number of rotated bit positions of the last round. This can be used to reconstruct the round key of
the last round from measurements of the total execution time and to break the cipher by iterating
this process.

Plaintext- and ciphertext-only timing attacks against IDEA are described in [21]. IDEA uses
in its round function multiplications of non-zero elements of the finite field Z/(216 +1)Z, where the
value 216 is represented by the string 016 to obtain a bijective mapping over the strings {0, 1}16.
In some applications, multiplication by 216 (i. e. the string 016) is specially coded in the program
and results in much faster execution than multiplication by other values.

4

2.4 Differential power analysis—DPA

Differential Power Analysis (DPA), introduced by Kocher et. al. [23, 24], is an attack that allows
one to obtain information about the secret key by performing a statistical analysis of the power
consumption measured for a large number of computations with the same key. In contrast to SPA
attacks, it is not required for the attacker to have a detailed knowledge of the implementation of
the algorithm. In the following, we describe the basic principles of DPA according to [24] and [15].

To be more specific we consider the case of the DES algorithm. In each of its 16 rounds the
DES algorithm performs table lookup operations in 8 S-boxes. Each S-box uses 6 key bits and 6
data bits as inputs and produces 4 output bits. The DPA attack proceeds as follows:

1. Run the encryption algorithm for N random values of plaintext input Yi, i = 1, . . . , N . For
each of the N plaintext inputs, a discrete time power consumption curve Ci of the relevant
part of the algorithm is recorded, i. e., Cij = {power consumption for input Yi at time t = tj}.
To amplify the signals contained in the power traces Ci we also compute the average power
trace C̄ (C̄j = 1

N

∑N
i=1 Cij).

2. Next, the attacker chooses one target bit, for example, the first output bit of the first S-box
in the first round of the DES algorithm. Let b be the value of that bit. Obviously, b depends
only on 6 bits of the secret key.

3. The attacker makes a hypothesis H0 in a statistical sense on the involved 6 key bits, i. e., he
guesses the value of these bits. He can now compute the theoretical value of b for the known
plaintext Yi under hypothesis H0. Depending on the theoretical value of b, he separates the
inputs and the corresponding power traces into two sets: those giving b = 0 and those giving
b = 1.

C0 := {Cij |b = 0}, C1 := {Cij |b = 1}

4. The attacker computes the average trace C̄0 for all inputs Yi leading to b = 0. If the guess
for the 6 key bits was wrong, then the power traces C̄0 and C̄ will not show any statistically
significant differences. (If the guess for the key is incorrect, then the computed value of b will
differ from the actual target bit for about half of the plaintexts Yi, thus, the power traces are
uncorrelated.) If, on the other hand, the guess was correct and the target bit b is involved
in the further computation, we will see a significant difference between C̄0 and C̄, i. e., we
can observe peaks in the power trace. In other words, if the power traces C̄0 and C̄ are
statistically indistinguishable with a certain error probability, then we must reject hypothesis
H0 and repeat the last steps with a different H0. (Note, that there are only 26 possible values
of H0.) Otherwise, the correct 6 key bits have been found.

5. Repeating steps 1–4 for the other 7 S-boxes the attacker learns 48 key bits. The remaining 8
key bits can be found by exhaustive search.

We would like to point out that DPA heavily relies on the following fundamental hypothesis
from [15]:

There exists an intermediate variable [target bit b=first output bit of first S-box in the first
round], that appears during the computation of the algorithm, such that knowing a few key
bits [6 key bits for H0] (in practice less than 32 bits) allows to decide whether two inputs
(respectively two outputs) give or not the same value for this variable.

Since step 3 of the original DPA attack requires the computation of the expected value of b under
hypothesis H0, DPA attacks concentrate on the beginning of an algorithm using known plaintext
or on the end of an algorithm using known ciphertext.

Remark 1.

(i) The number N of necessary plaintext inputs depends very strongly on the signal-to-noise ratio
of the smart card being investigated.

5

(ii) Before further computations are performed in step 1, the power traces have to be aligned in
time, so that one point t = tj corresponds to the same operation for all inputs Yi. However,
such timing variations can be filtered out by statistical means.

(iii) The DPA attack can be further enhanced by considering d target bits instead of one target
bit b (multiple bit DPA). In addition to the sets C0 := {Cij |b = 0d}, C1 := {Cij |b = 1d} one
forms a set C2 := {Cij |Cij 6∈ C0, C1}. All signals falling into C2 do not give enough power
differences and are therefore discarded. This increases the signal-to-noise ratio considerably,
see [28] for specific values of signal levels.

While the first DPA attacks were aimed at symmetric algorithms like DES [24, 15, 21], algorithms
for public-key cryptography, specifically methods for modular exponentiation, are also vulnerable.
The basis of DPA attacks against the square-and-multiply method for modular exponentiation, see
Section 2.3, is the fact that after the i-th iteration the ciphertext depends only on the first i key bits.
The authors of [29] describe three types of concrete attacks against smart card implementations
of square-and-multiply which differ in the assumptions on the capabilities of the adversary or the
smart card. Coron [8] presents a practical attack against an SPA-resistant version of double-and-
add, the equivalent to square-and-multiply in elliptic curve cryptography, and extends the attack
to other scalar multiplication algorithms (addition-subtraction methods, window-method).

Kocher’s original attack has the disadvantage that the adversary must know all the cleartexts
(attack the subkey of the first round) or all the ciphertexts (attack the subkey of the last round).
Recently, attacks have been proposed which try to circumvent these problematic issues: in [13] the
authors introduce the so-called inferential power analysis (IPA). They separate the power attack
into two stages: a profiling stage and the actual key extraction stage. During the profiling stage, a
large number of power traces is used to learn about the key scheduling (location and identification
of the target key bits). In the key extraction stage, only a few power traces are necessary to
find the subkey bits and then the master key itself. Since the profiling data depend only on the
implementation and not on the key that was used, it is possible to perform the profiling stage only
once (on a specific smart card) and then to use this knowledge for other specimen of this card
type. Further advantages of IPA attacks are the ability to look at the middle of an algorithm and
that they do not require either known plaintext or known ciphertext.

In [4] Biham and Shamir described a power attack which falls into the same category: they use
the power traces of several different cards to identify when key bits are handled. It is shown that
DES-like key scheduling algorithms are especially vulnerable to such attacks, while Skipjack-like
key scheduling structures seem to be more difficult to attack. Finally, the key scheduling of the
AES candidates is investigated with respect to these attacks.

In [6] a further attack against particular operations used to generate subkeys (key whitening
process) is reported and demonstrated on the basis of a reference implementation of Twofish on a
certain smart card. However, this attack is not limited to Twofish or this specific card. A general
evaluation of the resistance of AES candidates against timing and differential power attacks can
be found in [10]. See [30] for a comparative summary.

At this time, only a few concrete attacks against implementations of the AES candidates are
reported in the literature: instead there are rather general accounts of their vulnerability against
DPA. Techniques to secure the AES finalists are proposed in [27].

3 Countermeasures against side-channel attacks

3.1 Countermeasures against SPA

SPA attacks are relatively easy to circumvent. Of course, one tries to reduce the leaked power
signal and prevent the attacker from learning the implementation. Since the attacker cannot easily
amplify the secret information contained in the power trace, it suffices to decrease the signal-to-
noise ratio of the side-channel information considerably. By avoiding secret keys for conditional
branching, one can mask many SPA characteristics. For example, one can always compute c · b
mod m in step 4 of the modular exponentiation algorithm in Section 2.3 and only store the result if

6

ei = 1. Introducing random timing shifts also helps to make SPA attacks more difficult. However,
these countermeasures do not prevent more powerful attacks.

3.2 Countermeasures against DFA

Differential failure attacks which do not rely on altering the circuitry of the tamper-proof device can
be defeated by plausibility checks for the result of the cryptographic computation, for the internal
state of a protocol, and for the keys. The simplest method of protection for cipher algorithms
consists of running the algorithm twice and comparing the results. Unfortunately in most cases, this
results in intolerable execution times. Better performance can be reached by special algorithms that
check whether a randomized relation holds during the computation. In [32, 33] Shamir describes
such an algorithm for RSA with CRT which avoids the costly double computation of the modular
exponentiation. Identification schemes like Fiat-Shamir or the Schnorr-identification scheme can
be secured if the internal state of the prover is saved in a redundant way. This allows the prover to
check the consistency of the messages before answering a challenge, see [5]. Similar countermeasures
are presented in [31] against the key erasing attacks of [3]. If the key is stored with some redundancy,
the device can detect flipped bits.

Glitch attacks and (differential) failure attacks by cutting wires or destroying gates are more
difficult to control. In these cases, the device cannot reliably perform plausibility checks and special
hardware is necessary to take precautions, see [2, 1, 26].

3.3 Countermeasures against timing attacks

Since timing attacks rely on data dependent variations of the execution time the most obvious
countermeasure is to avoid such changes in the time pattern of a cryptographic algorithm. This
makes the implementation of cryptographic algorithms very complicated and costly in general.
The programmer must have a detailed knowledge of the processor, the hardware platform, the
algorithm, and sometimes the complete application. On the extreme, the execution of the pro-
gram has to be linear and cannot take advantage of performance optimizations, i. e., the running
time is always worst-case and the implementation is likely to be inacceptably slow. A carefully
designed implementation which is immune against timing attacks on one platform may become
insecure on others. Sometimes, timing variations are due to events which cannot be controlled by
the application programmer, like interference with other processes, memory mapping, hardware
exceptions, cache misses, and variable execution of machine instructions. Counting clock cycles to
ensure a constant execution time may be circumvented by observing other leakage channels (for
example power consumption).

To protect the exponentiation algorithm from Section 2.3 against timing attacks it is sufficient
for most applications to implement multiplication and squaring in such a way that they take
always the same amount of time. Although it was observed in [22] that in this case the total
execution time of the exponentiation still corresponds to the Hamming weight of the key, the
information computable by the attacker is negligible. If keys of length n bits are randomly chosen
the information leaked out by the Hamming weight can be upper bounded using Shannon’s entropy
formula by

2−n
n∑
i=0

(
n

i

)
log2

(
2n/
(
n

i

))
.

This adds up to ≈ 6.047 bits of key information for a random 1024 bit key, see [20] for a discussion
of Hamming weight of DES keys and timing attacks.

Another possibility to prevent timing attacks is based on blinding the input. To apply this
method, the cryptographic algorithm has to be transformed in a new scheme with an additional
parameter that influences all intermediate values but not the result. The value of this parameter
is randomly chosen for each application of the algorithm. It is necessary that the random value
is generated inside the tamper-proof device and not known to the attacker. Blinding decorrelates

7

inputs, intermediate values of the computation, and the execution time. Therefore, the time mea-
surements by the attacker are no longer reproducible. In [22, 32, 33] the authors describe several
methods for blinding exponentiation algorithms.

3.4 Countermeasures against DPA

One of the first—and most natural—attempts to counteract DPA attacks which have been pro-
posed in the literature and implemented in practical devices relies on the reduction of side channel
information: by introducing random timing shifts to complicate the alignment of power traces,
by replacing some of the critical instructions by “consumption-friendly” instructions, and, finally,
by adding filters and performing random power consuming operations one tries to decrease the
signal-to-noise ratio and, thereby, to increase the number of necessary power samples. The use of
differential logic, i. e., representing 0 by “01” and 1 by “10” respectively, leads to a lower signal-
to-noise ratio and a constant Hamming weight of the operands.

Another popular approach is to randomize the execution sequence, i. e., perform the DES-S-
box look-up in random order or perform additional rounds that do not affect the mathematical
result. However, unless this randomization is done extensively, which is often prohibited due to
performance constraints, it can be undone by only slightly more samples and some statistics.

The blinding technique proposed as a countermeasure against timing attacks [22] can be applied
in the DPA context, too. Since one has to protect against known plaintext and known ciphertext
attacks one should use both exponent and message blinding, see [29]. Instead of computing c = be

mod m one performs:

0) Compute vf = (v−1
i)e mod m for a random value vi

1) Blind the message b: b̂ = (vib) mod m
2) Blind the exponent e: ê = e+rϕ(m), r random value, ϕ Euler phi-function
3) Exponentiate: ĉ = (b̂)ê mod m

4) Unblind the result: c = (vf b̂) mod m
5) Update the pair (vi, vf)

Efficient ways to calculate and update the blinding pair (vi, vf) are discussed in [22].
For elliptic curve systems, mathematically equivalent countermeasures to those proposed for

modular exponentiation have been investigated by Coron [8]. A further countermeasure, specific
to elliptic curve cryptosystems, is the randomization of the projective coordinate representation
of a point.

Although no single defense makes a system impervious to DPA, adding a variety of these
countermeasures will likely increase the difficulty of attacks. A new quality of countermeasures
has been achieved with the definition of leakage immunity and the formal analysis of side leakage
information. Coron et. al. [9] develop statistical tests capable of detecting information leakage in
unknown cryptosystems. However, these tests are rather generic and passing these tests should not
give too much trust in a leakage-resistant cryptosystem. Chari et. al. [7] also give a definition of
leakage immunity, but in contrast to [9] they describe a provable secure instance under their specific
power consumption model. Utilizing the method of secret sharing, they propose to randomly split
each bit of the original computation into k shares and prove a lower bound on the number of
samples required to distinguish the distributions in step 4 of the attack in Section 2.4. A similar
approach is taken in [15] where a splitting of the S-boxes for the DES algorithm and a simple
splitting scheme for RSA is proposed. In summary, it can be stated, that first steps into the
formal analysis of computing with side-channel information have been taken. However, substantial
effort is still required to refine the power consumption models and to improve their theoretical
analysis.

Finally, it should be noted that some cryptographic algorithms like ECDSA are by their nature
rather immune against statistical attacks like DPA and timing attacks, since in this case scalar
multiplication is performed with a random exponent instead of a fixed exponent.

8

4 Conclusion

In this paper, we reviewed the current status of side-channel attacks against smart cards. We did
not describe new attacks, but instead tried to outline the basic principles and to work out the
main differences, ignoring the technical details of specific threats.

The importance of information leakage attacks has been acknowledged by the industry and
mechanisms to protect against it are now a major part of todays security design. Shortly after
the publication of these new types of attacks, only ad-hoc measures, like randomization and noise
generation, were incorporated into smart cards. Today, more sophisticated countermeasures are
implemented.

A combination of the countermeasures mentioned in this article should give enough security for
next generation smart cards. However, the development of a theoretical, unified power consumption
model, its formal analysis, and the derivation of quantitative security measures is still in its infancy.
First steps in this direction have been taken in recent research papers.

It is expected that by combining different sources of side-channel information, e. g. power con-
sumption and data from fault attacks, using powerful statistical methods and observing multiple
cryptographic operations, new, much more powerful attacks will be developed in the near future.
Although none of these techniques are known to exist at present, their potential threats and
possible countermeasures have to be taken into account by system designers and researchers.

References

1. R. J. Anderson and M. G. Kuhn, Tamper resistance—a cautionary note, Proceedings of Second
USENIX Workshop on Electronic Commerce (Oakland, California), 1996, pp. 1–11.

2. , Low cost attacks on tamper resistant devices, Proceedings of International Workshop on
Security Protocols 1997 (Paris, France) (M. Lomas et.al., ed.), Lecture Notes in Computer Science,
vol. 1361, Springer-Verlag, 1997, pp. 125–136.

3. E. Biham and A. Shamir, Differential fault analysis of secret key cryptosystems, Proceedings of
CRYPTO ’97 (Burton S. Kaliski Jr., ed.), Lecture Notes in Computer Science, vol. 1294, Springer-
Verlag, 1997, pp. 513–525.

4. , Power analysis of the key scheduling of the AES candidates, The Second AES Conference,
March 22-23, 1999, 1999, pp. 115–121.

5. D. Boneh, R. A. DeMillo, and R. J. Lipton, On the importance of checking cryptographic protocols
for faults, Proceedings of EUROCRYPT ’97 (W. Fumy, ed.), Lecture Notes in Computer Science, vol.
1233, Springer-Verlag, 1997, pp. 37–51.

6. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, A cautionary note regarding evaluation of AES
candidates on smart-cards, The Second AES Conference, March 22-23, 1999, 1999, pp. 133–147.

7. , Towards sound approaches to counteract power-analysis attacks, Proceedings of CRYPTO ’99
(M. J. Wiener, ed.), Lecture Notes in Computer Science, vol. 1666, Springer-Verlag, 1999, pp. 398–412.

8. J.-S. Coron, Resistance against differential power analysis for elliptic curve cryptosystems, Proceedings
of CHES ’99 (C. K. Koç and Chr. Paar, eds.), Lecture Notes in Computer Science, vol. 1717, Springer-
Verlag, 1999, pp. 292–302.

9. J.-S. Coron, P. Kocher, and D. Naccache, Statistics and secret leakage, 2000, 17 pages.

10. J. Daemen and V. Rijmen, Resistance against implementation attacks—a comparative study of the
AES proposals, The Second AES Conference, March 22-23, 1999, 1999, pp. 122–132.

11. J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-L. Willems, A practical
implementation of the timing attack, Technical Report CG-1998/1, Université catholique de Louvain,
June 1998.

12. , A practical implementation of the timing attack, Proceedings of CARDIS ’98, Lecture Notes
in Computer Science, Springer-Verlag, 1998.

13. P. N. Fahn and P. K. Pearson, IPA: A new class of power attacks, Proceedings of CHES ’99 (C. K. Koç
and Chr. Paar, eds.), Lecture Notes in Computer Science, vol. 1717, Springer-Verlag, 1999, pp. 173–
186.

14. O. Goldreich and R. Ostrovsky, Software protection and simulation on oblivious RAMs, Journal of the
ACM 43 (1996), no. 3, 431–471.

9

15. L. Goubin and J. Patarin, DES and differential power analysis, Proceedings of CHES ’99 (C. K. Koç
and Chr. Paar, eds.), Lecture Notes in Computer Science, vol. 1717, Springer-Verlag, 1999, pp. 158–
172.

16. G. Hachez, F. Koeune, and J. J. Quisquater, Timing attack: What can be achieved by a powerful
adversary, Proceedings of the 20th symposium on Inform. Theory in the Benelux (A. Barb/’e, E. C.
van der Meulen, and P. Vanroose, eds.), Werkgemeenschap Informatie- en Communicatietheorie, En-
schede (NL), 1999, pp. 63–70.

17. H. Handschuh, A timing attack on RC5, Technical Report SC02-1998, Gemplus’ Corporate Product
R&D Division, 1998.

18. H. Handschuh and H. M. Heys, A timing attack on RC5, Proceedings of SAC ’98, Lecture Notes in
Computer Science, vol. 1556, Springer-Verlag, 1999, pp. 306–320.

19. H. Handschuh, P. Pallier, and J. Stern, Probing attacks on tamper-resistant devices, Proceedings of
CHES ’99 (C. K. Koç and Chr. Paar, eds.), Lecture Notes in Computer Science, vol. 1717, Springer-
Verlag, 1999, pp. 303–315.

20. A. Hevia and M. Kiwi, Strength of two data encryption standard implementations under timing attacks,
ACM Transactions on Information and System Security 2 (1999), no. 4, 416–437.

21. J. Kelsey, B. Schneier, D. Wagner, and C. Hall, Side channel cryptanalysis of product ciphers, Proceed-
ings of ESORICS ’98, Lecture Notes in Computer Science, vol. 1485, Springer-Verlag, 1998, pp. 97–110.

22. P. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems,
Proceedings of CRYPTO ’96 (N. Koblitz, ed.), Lecture Notes in Computer Science, vol. 1109, Springer-
Verlag, 1996, pp. 104–113.

23. P. Kocher, J. Jaffe, and B. Jun, Introduction to differential power analysis and related attacks, http:
//www.cryptography.com/dpa/technical/, 1998.

24. , Differential power analysis, Proceedings of CRYPTO ’99 (M. J. Wiener, ed.), Lecture Notes
in Computer Science, vol. 1666, Springer-Verlag, 1999, pp. 388–397.

25. F. Koeune and J.-J. Quisquater, A timing attack against Rijndael, Technical Report CG-1999/1,
Université catholique de Louvain, June 1999.

26. O. Kömmerling and M. G. Kuhn, Design principles for tamper-resistant smartcard processors, Pro-
ceedings of USENIX Workshop on Smartcard Technology, 1999, pp. 9–20.

27. T. S. Messerges, Securing the AES finalists against power analysis attacks, Proceedings of Fast Soft-
ware Encryption Workshop 2000, Lecture Notes in Computer Science, Springer-Verlag, 2000, to ap-
pear.

28. T. S. Messerges, E. A. Dabbish, and R. H. Sloan, Investigations of power analysis attacks on smart-
cards, Proceedings of USENIX Workshop on Smartcard Technology, 1999, pp. 151–161.

29. , Power analysis attacks of modular exponentiation in smartcards, Proceedings of CHES ’99
(C. K. Koç and Chr. Paar, eds.), Lecture Notes in Computer Science, vol. 1717, Springer-Verlag, 1999,
pp. 144–157.

30. James Nechvatal, Elaine Barker, Donna Dodson, Morris Dworkin, James Foti, and Edward Roback,
Status report on the first round of the development of the advanced encryption standard, Tech. re-
port, National Institute of Standards and Technology (NIST), August 1999, http://csrc.nist.gov/
encryption/aes/round1/r1report-addenda.pdf.

31. P. Paillier, Evaluating differential fault analysis of unknown cryptosystems, Technical Report AP05-
1999, Gemplus’ Corporate Product R&D Division, 1999.

32. A. Shamir, How to check modular exponentiation, Rump Session of EUROCRYPT ’97, 1997.
33. , Method and apparatus for protecting public key schemes from timing and fault attacks, United

States Patent 5991415, November 23, 1999.

10

