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Abstract.

We consider the least squares approximation of gridded 2D data by tensor product
splines with free knots. The smoothing functional to be minimized—a generalization
of the univariate Schoenberg functional—is chosen in such a way that the solution of
the bivariate problem separates into the solution of a sequence of univariate problems
in case of fixed knots. The resulting optimization problem is a constrained separable
least squares problem with tensor product structure. Based on some ideas developed
by the authors for the univariate case, an efficient method for solving the specially
structured 2D problem is proposed, analyzed and tested on hand of some examples
from the literature.
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1 Introduction.

Approximation by tensor product splines with fixed knots is of great impor-
tance in theory and applications, mainly due its simple structure and its ease of
implementation. However, it is well known that the approximation error is, in
general, much smaller if variable knots are allowed instead of fixed ones. This is
true for the univariate as well as for the bivariate case.
On the other hand, approximation by splines with free knots leads to difficult

but highly structured nonlinear optimization problems. There is a vast amount
of literature on Chebyshev approximation by splines with free knots. Up to
know mainly univariate problems have been considered. However, a few years
ago Nürnberger [21] stated some research problems concerned with bivariate
splines with free knots, and in [19] an algorithm was given for bivariate segment
approximation which lead to good Chebyshev approximations by splines with
free knots.
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Unlike the authors mentioned above we, however, address in this paper the
problem of least squares approximation by splines with free knots. We generalize
results from least squares approximation by univariate splines with free knots to
the case of bivariate tensor product splines with gridded data. While there exist a
number of papers for univariate splines with free knots, see [27] for unconstrained
free knot splines, [25] and the references cited therein for constrained free knot
splines, this idea seems to be new for bivariate tensor product splines.
This paper is organized as follows: In Section 2 we introduce the notation and

review some results from the case of univariate spline approximation and smooth-
ing with free knots. In the following Section 3 we consider bivariate smoothing
splines and formulate the full and reduced approximation and smoothing prob-
lem, respectively. The full problems are nonlinear least squares problems with a
special structure—so-called separable least squares problems with tensor prod-
uct structure. In Section 4 we examine general problems of this type and show
that the full and the reduced problem are equivalent in a certain sense. We apply
these techniques to bivariate tensor product splines with free knots in Section 5.
In Section 6 the numerical solution of the reduced problem is considered. Fi-
nally, in Section 7 we demonstrate the performance and the advantages of our
method by some numerical tests.

2 Review of univariate results.

In this section we introduce the notation and shortly review the main results
of univariate free knot spline approximation. For details, discussions, and proofs
we refer to [27] and [25].

2.1 Spline smoothing with fixed knots.

We want to approximate given noisy data {xi, yi} (i = 1, . . . ,m) by a function
s from Sk,τ , the n-dimensional linear space of polynomial splines of order k ≥ 1
with knot sequence τ ∈ R

n+k, where m ≥ n. The abscissae xi are monotonically
increasing, a ≤ x1 < · · · < xm ≤ b, and the noisy measurements yi = g(xi) + εi

(i = 1, . . . ,m) result from an unknown smooth function g ∈ W q
2 [a, b] with εi

being independent and identically distributed stochastic errors.
The parameters of the spline s have to be chosen in such a way that the

Schoenberg functional

1
2

m∑
i=1

[yi − s(xi)]
2 + µ

1
2

∫ b

a

[
s(r)(x)

]2
dx

with the smoothing parameter µ > 0 and fixed order r ∈ {0, . . . , q} in the
smoothing term becomes minimal.
Let τ = (τ1, . . . , τn+k)

T with

τ1 = · · · = τk = a < τk+1 ≤ · · · ≤ τn < b = τn+1 = · · · = τn+k

be the knot sequence and consider a spline s ∈ Sk,τ defined by s =
∑n

j=1 Bj,k,ταj

where Bj,k,τ denotes the usual j-th normalized polynomial B-spline of order k
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with knot sequence τ . Using the observation matrix

B(τ ) := (Bj,k,τ (xi))
j=1,...,n
i=1,...,m , B(τ ) ∈ R

m×n,

the vector y := (y1, . . . , ym)T ∈ R
m of data and the vector α := (α1, . . . , αn)

T ∈
R

n of spline coefficients, the approximation term can be written as

1
2

m∑
i=1

[yi − s(xi)]
2 =

1
2
‖y −B(τ )α‖22 .

The smoothing term can be represented in a similar form as

1
2

∫ b

a

[
s(r)(x)

]2
dx =

1
2
‖Sr(τ )α‖22

with the smoothing matrix Sr(τ ) ∈ R
(n−r)×n which is either the exact smoothing

matrix S̄r defined as above or else a cheaper approximation S̃r given in [26], [27].
Now we are able to express the Schoenberg functional as function of the spline

coefficients α and the knots τ as

1
2
‖y −B(τ )α‖22 +

1
2
µ ‖Sr(τ )α‖22 =

1
2

∥∥∥∥
(
y
0

)
−
[

B(τ )√
µSr(τ )

]
α

∥∥∥∥
2

2

.

The system matrix Bµ(τ ) :=
[

B(τ )√
µSr(τ )

]
∈ R

(m+n−r)×n has full rank n if the

regularity condition m ≥ r and µ > 0 is met.

2.2 Spline smoothing with free knots.

We include a subset t =
(
τp(1), . . . , τp(l)

)T ∈ R
l of the inner knots, the so-called

free knots, into the optimization process whereas the remaining knots have to be
given in advance and stay fixed. Hence, B and Sr become functions of t alone,
and we write B(t) and Sr(t) instead of B(τ ) and Sr(τ ), respectively. Note that
the number l of the free knots τp(j) and the indices p(j) of them have to satisfy
l ≤ n− k and k < p(1) < · · · < p(l) < n+ 1.
In approximation by splines with free knots one has to avoid the coalescing of

knots. Thus we require τp(j) ∈ [τp(j)−1+ εδj, τp(j)+1− εδj], δj := τp(j)+1−τp(j)−1

(j = 1, . . . , l) with 0 < ε � 1 which, by using appropriately chosen C and h,
can equivalently be written as

(2.1) Ct− h ≥ 0 with C ∈ R
2l×l,h ∈ R

2l.

Finally we can formulate the full smoothing problem

(2.2) minimize
α∈Rn,t∈Rl

f(α, t) :=
1
2

∥∥∥∥
(
y
0

)
−
[

B(t)√
µSr(t)

]
α

∥∥∥∥
2

2

s.t. Ct− h ≥ 0.

Problem (2.2) is a separable nonlinear least squares problem. By inserting the
minimum norm solution αopt(t) := Bµ(t)+ ( y

0 ) of (2.2) for fixed knots t with
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respect to α into the objective function of the full problem we obtain the reduced
smoothing problem
(2.3)

minimize
t∈Rl

f(t) :=
1
2

∥∥∥∥∥
(
y
0

)
−
[

B(t)√
µSr(t)

] [
B(t)√

µSr(t)

]+(y
0

)∥∥∥∥∥
2

2

s.t. Ct− h ≥ 0

with only the free knots t as variables. The investigation of the full and reduced
smoothing problem and the efficient numerical solution of the reduced problem
was the subject of [27]. There it was shown that the reduced smoothing problem
(2.3) has a solution under the conditions

(C1) The knots satisfy τj < τj+k−q (j = q + 1, . . . , n).

(C2) The regularity condition m ≥ r and µ > 0 is met.

If, further, the condition

(C3) The free knots are simple knots, and it holds k ≥ 3.

is fulfilled, then the change from minimizing the full functional to minimizing
the reduced functional does not add any critical points, does not exclude the
solution of the original problem, and the critical points are equivalent, see the
original papers for details.
The reduced problem was solved by a generalized Gauss–Newton method

which requires the Jacobian F′(t) of the reduced functional f(t) = 1
2‖F(t)‖22.

Since the computation of the Jacobian is quite expensive we use instead the
so-called Kaufman approximation JK(t) ≈ F′(t). This results in a very efficient
and robust algorithm for the computation of univariate free knot splines.
In the following we will extend these ideas to two dimensions, i. e., we tensorize

the univariate results. For simplicity we use the notations from the univariate
case and characterize the variables in x- and y-direction by a sub- or superscript
1 and 2, resp., e. g., τ 1 denotes the knot sequence in x-direction etc.

3 Bivariate smoothing splines.

Let Z = {zi1,i2 : i1 = 1, . . . ,m1; i2 = 1, . . . ,m2} be noisy measurements of an
unknown function g ∈ W q1,q2

2 ([a1, b1] × [a2, b2]), which are given on a grid
[x1, . . . , xm1 ]× [y1, . . . , ym2 ], i.e., it holds

zi1,i2 = g(xi1 , yi2) + εi1,i2

with the abscissae a1 ≤ x1 < · · · < xm1 ≤ b1, a2 ≤ y1 < · · · < ym2 ≤ b2 and
the measurement errors εi1,i2 . The stochastic errors εi1,i2 are assumed to be
independent and identically distributed.
We want to approximate these data by a tensor product spline. Such splines

have a simple structure, and their computation allows the separation into a
sequence of univariate problems if the data are given on a rectangular grid as in
our case.
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The extremal properties of univariate splines carry over to both interpolating
and smoothing tensor product splines. For example, the natural smoothing bi-
cubic spline is the solution of the variational problem

(3.1) min
{ m1∑

i1=1

m2∑
i2=1

[zi1,i2 − s(xi1 , yi2)]
2 + µ1

m2∑
i2=1

∫ b1

a1

[D2,0s(x, yi2)]
2 dx+

µ2

m1∑
i1=1

∫ b2

a2

[D0,2s(xi1 , y)]
2 dy + µ1µ2

∫ b1

a1

∫ b2

a2

[D2,2s(x, y)]2 dx dy
}

over s ∈ W 2,2
2 ([a1, b1] × [a2, b2]), see [15]. Here the operator Dr1,r2 denotes the

partial derivative of order r1 with respect to x and of order r2 with respect to
y, and the parameters µ1 > 0 and µ2 > 0 are the smoothing parameters.
Splines defined by the above extremal property have the disadvantage that the

knots of the spline are identical with the data points, i.e., no data reduction is
possible. Therefore we do not use the classical variational approach but follow a
so-called direct approach by restricting the approximating functions s fromW 2,2

2

a priori to a fixed tensor product space of B-splines, i.e., the unknown function g
will be approximated by a bivariate spline s ∈ Sk1,τ1⊗Sk2,τ2 with knot sequences
the cardinality of which may be much smaller than the cardinality of the grid
points. The space Sk1,τ1 ⊗ Sk2,τ2 is the tensor product of the univariate spline
spaces Sk1,τ1 and Sk2,τ2 of polynomial splines of order k1 and k2 with knot
sequence τ 1 and τ 2, respectively. The knot sequences are as follows:

τ 1 : τ 1
1 = . . . = τ 1

k1
= a1 < τ 1

k1+1 ≤ . . . ≤ τ 1
n1
< b1 = τ 1

n1+1 = . . . = τ 1
n1+k1

,

τ 2 : τ 2
1 = . . . = τ 2

k2
= a2 < τ 2

k2+1 ≤ . . . ≤ τ 2
n2
< b2 = τ 2

n2+1= . . . = τ 2
n2+k2

.

The parameters of the spline s have to be chosen in such a way that the least
squares error defined by the approximation term

(3.2a) ϕ(s) :=
1
2

m1∑
i1=1

m2∑
i2=1

[zi1,i2 − s(xi1 , yi2)]
2

becomes minimal. It is known that the solution of (3.2a) is unique if the Schoen-
berg-Whitney condition is fulfilled but this can not be assured in case of arbitrary
data {xi1 , yi2}.
By using the thin plate functional

∫ b1

a1

∫ b2

a2

{[D2,0s(x, y)]2 + 2[D1,1s(x,y)]2 + [D0,2s(x, y)]2} dx dy

as smoothing term uniqueness can be achieved independently of the data. This
functional has the drawback that it has no tensor product structure and, there-
fore, the solution process does not separate in the case of gridded data. However,
by utilizing a smoothing term which is slightly modified compared to (3.1) and
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minimizing the functional φ defined by

(3.2b)

φ(s) :=
1
2

m1∑
i1=1

m2∑
i2=1

[zi1,i2 − s(xi1 , yi2)]
2 + µ1

1
2

m2∑
i2=1

∫ b1

a1

[
Dr1,0s(x, yi2)

]2
dx

+ µ2
1
2

m1∑
i1=1

∫ b2

a2

[
D0,r2s(xi1 , y)

]2
dy + µ1µ2

1
2

∫ b1

a1

∫ b2

a2

[Dr1,r2s(x, y)]2 dy dx,

we again have a separation into a sequence of univariate problems. Unlike the
thin plate functional, this smoothing functional—a generalization of the uni-
variate Schoenberg functional—has no nice physical interpretation. However, it
serves quite well as an appropriate regularization term in that it guarantees a
unique solution and preserves the tensor product structure.
Bivariate smoothing splines with fixed knots have a long history: Dierckx [6]

used first a nonseparable smoothing term before a suitable separable term had
been found in [7]. Based on a variational approach, Hu/Schumaker considered
natural bicubic smoothing splines [15] and complete smoothing splines [16]. The
abstract case of interpolating and smoothing tensor product splines—from which
many of the above can be derived as special cases—is investigated in [9]. Finally,
in [20], [3] and [22] numerical techniques for minimizing the functional (3.2b) for
fixed knots have been considered. Let us point out that, independent of the
cited sources, V. Kunert has proposed such a tensor product smoothing term
and, unlike the others, developed an efficient and stable solution process along
the lines of [26].
The main advantage of the direct approach is that data reduction is possible

and that the number and position of knots can be chosen independent of the
data.

3.1 Representation of the smoothing functional.

We use polynomial B-splines of order k1 and k2 with knot sequences τ 1 and
τ 2 as basis for the univariate spaces Sk1,τ1 and Sk2,τ2 , respectively. They are
denoted by Bj1,k1,τ1 (j1 = 1, . . . , n1) and Bj2,k2,τ2 (j2 = 1, . . . , n2). So one
obtains the representation

s(x, y) =
n1∑

j1=1

n2∑
j2=1

Bj1,k1,τ1(x)Bj2,k2,τ2(y)αj1,j2

with coefficients αj1,j2 for a tensor product spline s ∈ Sk1,τ1 ⊗ Sk2,τ2 . By using
this representation, the functionals (3.2a) and (3.2b) lead to the problems

(3.3a)
1
2

m1∑
i1=1

m2∑
i2=1


zi1,i2 −

n1∑
j1=1

n2∑
j2=1

Bj1,k1,τ1(xi1 )Bj2,k2,τ2(yi2)αj1,j2



2

→ min
αj1,j2
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and

(3.3b)
1
2

m1∑
i1=1

m2∑
i2=1


zi1,i2 −

n1∑
j1=1

n2∑
j2=1

Bj1,k1,τ1(xi1)Bj2,k2,τ2(yi2)αj1,j2



2

+ µ1
1
2

m2∑
i2=1

∫ b1

a1


 n1∑

j1=1

n2∑
j2=1

B
(r1)
j1,k1,τ1(x)Bj2,k2,τ2(yi2)αj1,j2



2

dx

+ µ2
1
2

m1∑
i1=1

∫ b2

a2


 n1∑

j1=1

n2∑
j2=1

Bj1,k1,τ1(xi1 )B
(r2)
j2,k2,τ2(y)αj1,j2



2

dy

+ µ1µ2
1
2

∫ b1

a1

∫ b2

a2

[
B

(r1)
j1,k1,τ1(x)B

(r2)
j2,k2,τ2(y)αj1,j2

]2
dy dx→ min

αj1,j2

.

3.1.1 Matrix formulation.

For notational convenience we will use matrix notation in the following. We
define

A := (αj1,j2)
j2=1,...,n2
j1=1,...,n1

∈ R
n1×n2 , Z := (zi1,i2)

i2=1,...,m2
i1=1,...,m1

∈ R
m1×m2 ,

β1(x, τ 1) :=
(
B1,k1,τ1(x), . . . , Bn1,k1,τ1(x)

)T ∈ R
n1 ,

β2(y, τ 2) :=
(
B1,k2,τ2(y), . . . , Bn2,k2,τ 2(y)

)T ∈ R
n2 ,

B1(τ 1) :=
(
Bj1,k1,τ1(xi1)

)j1=1,...,n1

i1=1,...,m1
=
(
β1(xi1 , τ

1)T
)
i1=1,...,m1

∈ R
m1×n1 ,

B2(τ 2) :=
(
Bj2,k2,τ2(yi2)

)j2=1,...,n2

i2=1,...,m2
=
(
β2(yi2 , τ

2)T
)
i2=1,...,m2

∈ R
m2×n2 .

Thus we have s(x, y) = β1(x, τ 1)TAβ2(y, τ 2), and (3.3a) reads as

(3.4a)
1
2

∥∥Z−B1(τ 1)AB2(τ 2)T
∥∥2

F
→ min

A∈Rn1×n2

where ‖ . ‖F denotes the Frobenius matrix norm. If we define smoothing matrices

S1r1
(τ 1) ∈ R

(n1−r1)×n1 , S2r2
(τ 2) ∈ R

(n2−r2)×n2

as in the univariate case, (3.3b) becomes

1
2

∥∥Z−B1(τ 1)AB2(τ 2)T
∥∥2

F
+

1
2
µ1
∥∥S1r1

(τ 1)AB2(τ 2)T
∥∥2

F

+
1
2
µ2

∥∥∥B1(τ 1)AS2r2
(τ 2)

T
∥∥∥2

F
+

1
2
µ1µ2

∥∥∥S1r1
(τ 1)AS2r2

(τ 2)
T
∥∥∥2

F
→ min

A∈Rn1×n2

or, using block notation,

(3.4b)
1
2

∥∥∥∥∥
[
Z 0
0 0

]
−
[

B1(τ 1)√
µ1S1r1

(τ 1)

]
A
[

B2(τ 2)√
µ2S2r2

(τ 2)

]T
∥∥∥∥∥
2

F

→ min
A∈Rn1×n2

.
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Before we characterize the solutions of (3.4a) and (3.4b) we need some auxil-
iary results. Recall that the Kronecker product of A ∈ R

m×n and B ∈ R
p×q is

given by

A⊗B :=




a11B · · · a1nB
...

...
am1B · · · amnB


 ∈ R

(m·p)×(n·q).

For matrices A = (ai,j) ∈ R
m×n the operation vec : R

m×n → R
m·n is defined by

vec (A) := (a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn)
T ∈ R

m·n.

Using elementary facts about Kronecker products and the vec-operator, see
e.g. [1], it can be shown that ‖AXB−C‖2F =

∥∥(BT ⊗A
)
vec (X)− vec (C)

∥∥2
2
.

Hence, problem (3.4a) is equivalent to

(3.5)
1
2
‖vec (Z)− (B2(τ 2)⊗B1(τ 1)) vec (A)‖22 → min

vec(A)∈Rn1n2
,

the minimum norm solution Aopt(τ 1, τ 2) of which is, for fixed τ 1 and τ 2, given
by

vec (Aopt) = (B2 ⊗B1)+ vec (Z) = (B+
2 ⊗B+

1 ) vec (Z) = vec
(
B+

1 Z(B
+
2 )

T
)
, i.e.,

(3.6a) Aopt(τ 1, τ 2) := B1(τ 1)+Z
(
B2(τ 2)+

)T
.

It can be computed by successive solution of the following univariate problems:

Solve
1
2
‖Z−B1(τ 1)F‖2F → min

F∈Rn1×m2
for F = B1(τ 1)+Z,(F)

Solve
1
2

∥∥FT −B2(τ 2)AT
∥∥2

F
→ min

A∈Rn1×n2
for AT = B2(τ 2)+FT .(A)

Analogously one obtains the minimum norm solution to problem (3.4b)

(3.6b) Aopt(τ 1, τ 2) :=
[

B1(τ 1)√
µ1S1r1

(τ 1)

]+ [Z 0
0 0

]([
B2(τ 2)√

µ2S2r2
(τ 2)

]+)T

which can successively be computed as follows:

Solve
1
2

∥∥∥∥
[
Z 0
0 0

]
−
[

B1(τ 1)√
µ1S1r1

(τ 1)

]
F
∥∥∥∥
2

F

→ min
F∈Rn1×(m2+n2−r2)

for F,(F)

Solve
1
2

∥∥∥∥FT −
[

B2(τ 2)√
µ2S2r2

(τ 2)

]
AT

∥∥∥∥
2

F

→ min
A∈Rn1×n2

for AT .(A)

For the solution of subproblems (A) and (F) we can use the row-wise Givens
factorization developed for the univariate case, see [26] for details. General
investigations about the exploitation of structure in large linear least squares
problems based on Kronecker products can be found in [10].



BIVARIATE FREE KNOT SPLINES 161

3.2 The full and the reduced approximation problem.

Following our general philosophy, see [27], [25], we now include the knots of
the splines into the optimization process. If we consider a subset (t1, t2) of the
inner knots in problem (3.4a) as variable, we get the full approximation problem

f(t1, t2,A) :=
1
2

∥∥Z−B1(t1)AB2(t2)T
∥∥2

F
→ min

t1,t2,A
(3.7)

with linear constraints

C1t1 − h1 ≥ 0, C2t2 − h2 ≥ 0.(3.8)

which avoid coalescing of knots.
Inserting the minimum norm solution (3.6a) into the functional f one obtains

the reduced approximation problem

(3.9) f(t1, t2) :=
1
2

∥∥∥Z−B1(t1)B1(t1)+Z
(
B2(t2)+

)T
B2(t2)T

∥∥∥2
F
→ min

t1,t2

with the linear inequality constraints (3.8). The objective function can equiva-
lently be written as

f(t1, t2) =
1
2
‖Z−PB1ZPB2‖

2
F =

1
2

∥∥P⊥
B1
ZPB2

∥∥2
F

with the orthogonal projectors PB1 := B1(t1)B1(t1)+, PB2 := B2(t2)B2(t2)+,
and P⊥

B1
:= I−PB1 .

3.3 The full and the reduced smoothing problem.

For the smoothing problem (3.4b) one obtains analogously the full smoothing
problem
(3.10)

f(t1, t2,A) :=
1
2

∥∥∥∥∥
[
Z 0
0 0

]
−
[

B1(t1)√
µ1S1r1

(t1)

]
A
[

B2(t2)√
µ2S2r2

(t2)

]T
∥∥∥∥∥
2

F

→ min
t1,t2,A

with the linear inequality constraints (3.8).
Again, inserting the minimum norm solution (3.6b) into the functional, one

obtains the reduced smoothing problem

(3.11) f(t1, t2) :=
1
2

∥∥∥∥
[
Z 0
0 0

]
−P[ B√

µS

]
1

[
Z 0
0 0

]
P[ B√

µS

]
2

∥∥∥∥
2

F

→ min
t1,t2

with the constraints (3.8). The orthogonal projectors are defined by

P[ B√
µS

]
1
:=
[

B1(t1)√
µ1S1r1

(t1)

] [
B1(t1)√

µ1S1r1
(t1)

]+

P[ B√
µS

]
2
:=
[

B2(t2)√
µ2S2r2

(t2)

] [
B2(t2)√

µ2S2r2
(t2)

]+
.
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In the rest of this paper we investigate the equivalence of solutions to the full
and the reduced problem and develop an algorithm for the solution of the re-
duced problem. We are especially interested whether the problems are separable
and how techniques from the univariate case carry over. Note that a satisfying
resolution of the geometric structure expressed by the data is, in principle, im-
possible if we use tensor product splines. For example, peaks and diagonally
placed layers can not be approximated well. Alternatives are splines on triangu-
lations, curved knot lines, or the usage of hierarchical B-Splines. Despite these
inherent disadvantages, tensor product splines are widely used in practice since
they are simple to handle and inexpensive to compute as long as the knot lines
are fixed.
While there are several algorithms available for the direct minimization of the

least squares error as function of the free knots in the univariate case, we know
of no such algorithms in the bivariate case. If we restrict to a heuristic, adaptive
insertion of knot lines we have the algorithm REGRID from [8] at our disposal.
For the case of Chebyshev approximation first results were achieved recently in
[19] as already mentioned in the introduction.

4 Separable least squares problems with tensor product structure.

In this section we will detach from the problem of spline smoothing and con-
sider general optimization problems of the following form:

Full problem

(4.1) f(t1, t2,A) :=
1
2
‖F(t1, t2,A)‖2F → min

t1,t2,A

with F(t1, t2,A) := Z−B1(t1)AB2(t2)T subject to the constraints

(4.2) C1t1 − h1 ≥ 0, C2t2 − h2 ≥ 0.

Here B1 and B2 are arbitrary smooth matrix functions. The remaining quan-
tities Z, C1, C2, h1 and h2 are constant matrices and vectors. The variable
projection solution, i. e., the optimal solution Aopt of (4.1) for fixed t1 and t2, is
defined by

(4.3) Aopt(t1, t2) := B1(t1)+Z
(
B2(t2)+

)T
.

Reduced problem

(4.4) f(t1, t2) :=
1
2
‖F(t1, t2)‖2F → min

t1,t2

with F(t1, t2) := F(t1, t2,Aopt(t1, t2)) = P⊥
B1
ZPB2 under the constraints (4.2).

Obviously an equivalent representation of the reduced functional f(t1, t2) is given
by

f(t1, t2) =
1
2

∥∥∥B1(t1)B1(t1)+Z
(
B2(t2)+

)T
B2(t2)T − Z

∥∥∥2
F
=

1
2

∥∥PB1ZP
⊥
B2

∥∥2
F
.
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We will now—in generalization of the results of [14]—investigate to what ex-
tent the full and reduced problem are equivalent. In the following we will often
need the Fréchet derivatives of certain functionals which are defined using Frobe-
nius norms. Let ∂ denote the operator of Fréchet derivative. Then we have

Lemma 4.1 (Fréchet derivatives of Frobenius norms).

Let A : R
l → L (Rn,Rm), x ∈ R

l → A(x) ∈ R
m×n be a Fréchet differentiable

matrix function, and define f : R
l → L (R) by

x ∈ R
l → f(x) :=

1
2
‖A(x)‖2F =

1
2
tr
{
A(x)TA(x)

}
=

1
2
tr
{
A(x)A(x)T

}
∈ R.

Then it holds

∂f(x)[∆x] = tr
{
(∂A(x)[∆x])T A(x)

}
= tr

{
A(x)T (∂A(x)[∆x])

}
= tr

{
(∂A(x)[∆x])A(x)T

}
= tr

{
A(x) (∂A(x)[∆x])T

}
for all ∆x ∈ R

l.
Further, we need the Fréchet derivative of an orthogonal projector. We con-

sider an arbitrary differentiable m× n matrix function B( . ) of locally constant
rank and the corresponding orthogonal projector PB := BB−.

Lemma 4.2 (Golub/Pereyra [14, Lemma 4.1]).

Let B−( . ) be an n×m matrix function such that (P1) BB−B = B and (P3)
(BB−)T = BB−. Then it holds

∂PB = P⊥
B(∂B)B

− +
(
P⊥

B(∂B)B
−)T where P⊥

B = I−PB.

4.1 Fréchet derivative of the full functional.

Let ∂1 be the Fréchet derivative with respect to t1. Using Lemma 4.1 we have

∂1f(t1, t2,A)[∆t1] = tr
{
(∂1F(t1, t2,A)[∆t1])

T
F(t1, t2,A)

}
.

For simplicity we will omit the argument of the matrix functions B1 and B2.
Obviously it holds ∂1F(t1, t2,A)[∆t1] = −∂1B1[∆t1]ABT

2 , hence we have

(4.5) ∂1f(t1, t2,A)[∆t1] = − tr
{
B2AT (∂1B1[∆t1])

T (Z−B1ABT
2

)}
.

for the Fréchet derivative of the full functional with respect to t1.
Let ∂2 be the Fréchet derivative with respect to t2. Using the representation

f(t1, t2,A) =
1
2
‖F(t1, t2,A)‖2F =

1
2
tr
{
F(t1, t2,A)F(t1, t2,A)T

}
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with F(t1, t2,A) := B1ABT
2 − Z we get from Lemma 4.1

∂2f(t1, t2,A)[∆t2] = tr
{
F(t1, t2,A) (∂2F(t1, t2,A)[∆t2])

T
}
.

With ∂2F(t1, t2,A)[∆t2] = B1A (∂2B2[∆t2])
T we finally obtain

(4.6) ∂2f(t1, t2,A)[∆t2] = tr
{(
B1ABT

2 − Z
)
(∂2B2[∆t2])ATBT

1

}
for the Fréchet derivative of the full functional with respect to t2.

4.2 Fréchet derivative of the reduced functional.

We will now compute the Fréchet derivative of the reduced functional f with
respect to t1. First, we have

∂1f(t1, t2)[∆t1] = tr
{
(∂1F(t1, t2)[∆t1])

T F(t1, t2)
}

because of Lemma 4.1, and with Lemma 4.2

∂1F(t1, t2)[∆t1] =
(
∂1P⊥

B1
[∆t1]

)
ZPB2

= −
{
P⊥

B1
(∂1B1[∆t1])B+

1 +
(
P⊥

B1
(∂1B1[∆t1])B+

1

)T}
ZPB2 .

It follows

∂1f(t1, t2)[∆t1] =

− tr
{
PT

B2
ZT
{
P⊥

B1
(∂1B1[∆t1])B+

1 +
(
P⊥

B1
(∂1B1[∆t1])B+

1

)T}
P⊥

B1
ZPB2

}

and, because of B+
1 P

⊥
B1

= 0 and
(
P⊥

B1

)T
P⊥

B1
= P⊥

B1
, finally

(4.7) ∂1f(t1, t2)[∆t1] = − tr
{
PB2Z

T
(
(∂1B1)[∆t1])B+

1

)T
P⊥

B1
ZPB2

}
.

Analogously we obtain

(4.8) ∂2f(t1, t2)[∆t2] = − tr
{
PB1ZP

⊥
B2
(∂2B2[∆t2])B+

2 Z
TPB1

}
.

using the representation

f(t1, t2) =
1
2
‖F(t1, t2)‖2F =

1
2
tr
{
F(t1, t2)F(t1, t2)T

}
with F(t1, t2) := PB1ZP

⊥
B2
.



BIVARIATE FREE KNOT SPLINES 165

4.3 Relations between Fréchet derivatives.

Lemma 4.3. Let the matrix functions B1 and B2 have locally constant rank
around t1 and t2, respectively, and let

Aopt (t1, t2) = B1 (t1)
+ Z
(
B2 (t2)

+)T
be the corresponding variable projection solution. Then

∂1f (t1, t2) = ∂1f (t1, t2,Aopt (t1, t2)) ,∂2f (t1, t2) = ∂2f (t1, t2,Aopt (t1, t2)) .

Proof. (i) First we consider the Fréchet derivative with respect to t1. By
inserting the variable projection solution into (4.5) we obtain

∂1f (t1, t2,Aopt (t1, t2)) [∆t1]

= tr
{
−B2B+

2 Z
T (B+

1 )
T (∂1B1[∆t1])T

(
Z−B1B+

1 Z(B
+
2 )

TBT
2

)}
= tr

{
−PB2Z

T ((∂1B1[∆t1])B+
1 )

TP⊥
B1
ZPB2

}
= ∂1f (t1, t2) [∆t1].

(ii) Analogously we obtain the Fréchet derivative with respect to t2 as

∂2f (t1, t2,Aopt (t1, t2)) [∆t2]

= tr
{(
B1B+

1 Z(B
+
2 )

TBT
2 − Z

)
(∂2B2[∆t2])B+

2 Z
T (B+

1 )
TBT

1

}
= tr

{
−PB1ZP

⊥
B2
(∂2B2[∆t2])B+

2 Z
TPB1

}
= ∂2f (t1, t2) [∆t2].

The importance of the above lemma and the following theorem lies not only
in their statements itself—which are to be expected—but in the formulae for
gradient and Jacobian of the reduced functional derived there.

4.4 Correspondence between the full and the reduced problem.

The following theorem is a natural generalization of [14, Theorem 2.1] to the
tensor product case. Note, however, that we have allowed linear inequality
constraints with respect to t1 and t2.

Theorem 4.4 (Correspondence between the full and reduced prob-

lem).

Let the full and the reduced problem be defined as above. Assume further that
the matrix functions B1(t1) and B2(t2) have constant rank on the open sets
Ω1 ⊂ R

l1 and Ω2 ⊂ R
l2 , respectively.

(i) If (t1∗, t2∗) is a critical point (or a global minimizer on Ω1 × Ω2) of the
reduced problem then (t1∗, t2∗,Aopt (t1∗, t2∗)) is a critical point (or a global
minimizer for (t1, t2) ∈ Ω1 × Ω2) of the full problem and it holds

f (t1∗, t2∗,Aopt (t1∗, t2∗)) = f (t1∗, t2∗)

where Aopt (t1∗, t2∗) = B1 (t1∗)
+ Z
(
B2 (t2∗)

+)T
.
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(ii) Let (t1∗, t2∗,A∗) be a global minimizer of the full problem for (t1, t2) ∈
Ω1 × Ω2. Then (t1∗, t2∗) is a global minimizer of the reduced problem on
Ω1 × Ω2 and it holds

f (t1∗, t2∗) = f (t1∗, t2∗,A∗) .

If there is an unique A∗ among all minimizing triplets f (t1, t2,A), then it
must hold

A∗ = B1 (t1∗)
+ Z
(
B2 (t2∗)

+)T .
Proof. We define the Lagrangian of the the full and reduced problems

LI (t1, t2,A,w1,w2) := f (t1, t2,A)−
ncstr1∑

i=1

w
1
ir

1
i (t

1)−
ncstr2∑

i=1

w
2
ir

2
i (t

2)

LII (t1, t2,w1,w2) := f (t1, t2)−
ncstr1∑

i=1

w1
i r

1
i (t

1)−
ncstr2∑

i=1

w2
i r

2
i (t

2)

with nonnegative Lagrange multipliers w1
i , w

1
i (i = 1, . . . , ncstr1) and w2

i , w
2
i

(i = 1, . . . , ncstr2); and the constraints r1(t1) := C1t1 − h1 ≥ 0 and r2(t2) :=
C2t2 − h2 ≥ 0.
(i) Let (t1∗, t2∗) be a critical point of the reduced problem. The first order

optimality conditions state the existence of multipliers w1∗ and w2∗ so that

∇t1LII (t1∗, t2∗,w1∗,w2∗) = 0 ∇t2LII (t1∗, t2∗,w1∗,w2∗) = 0

r1
i (t

1∗) ≥ 0 (i = 1, . . . , ncstr1) r2
i (t

2∗) ≥ 0 (i = 1, . . . , ncstr2)
w1∗

i r
1
i (t

1∗) = 0 (i = 1, . . . , ncstr1) w2∗
i r

2
i (t

2∗) = 0 (i = 1, . . . , ncstr2)
w1∗

i ≥ 0 (i = 1, . . . , ncstr1) w2∗
i ≥ 0 (i = 1, . . . , ncstr2).

Further we assume that appropriate constraint qualifications at (t1∗, t2∗) are
satisfied.
Now it holds

0 = ∇t1LII (t1∗, t2∗,w1∗,w2∗)

= ∇t1f (t1∗, t2∗)−
ncstr1∑

i=1

w1∗
i ∇t1r

1
i (t

1∗)−
ncstr2∑

i=1

w2∗
i ∇t1r

2
i (t

2∗).

Using Lemma 4.3 and identifying corresponding multipliers we obtain

= ∇t1 f (t1∗, t2∗,Aopt (t1∗, t2∗))−
ncstr1∑

i=1

w
1∗
i ∇t1r

1
i (t

1∗)−
ncstr2∑

i=1

w
2∗
i ∇t1r

2
i (t

2∗)

= ∇t1LI (t1∗, t2∗,Aopt (t1∗, t2∗) ,w1∗,w2∗) .
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Analogously, 0 = ∇t1LI (t1∗, t2∗,Aopt (t1∗, t2∗) ,w1∗,w2∗) . Together with the
feasibility of the constraints and the complementarity (after identification of
corresponding multipliers) this yields the first order optimality conditions of the
full problem. The constraint qualifications carry over from the full problem since
the constraints are unaltered.
Note that ∇ALI (t1∗, t2∗,Aopt (t1∗, t2∗) ,w1∗,w2∗) = 0 due to the definition of
Aopt (t1∗, t2∗).
Hence (t1∗, t2∗,Aopt (t1∗, t2∗) ,w1∗,w2∗) is a critical point of the full problem.

From the definition of the reduced problem we have

f (t1∗, t2∗,Aopt (t1∗, t2∗)) = f (t1∗, t2∗) .

The rest of the proof follows the ideas of Golub/Pereyra. For the sake of
completeness we state the remaining steps.
Let (t1∗, t2∗) be a global minimizer of the reduced problem on Ω1 × Ω2 and

let Aopt (t1∗, t2∗) = B1 (t1∗)
+ Z
(
B2 (t2∗)

+)T
. Then f (t1∗, t2∗,Aopt (t1∗, t2∗)) =

f (t1∗, t2∗). Assume there exists
(
t1†, t2†,A†) with t1† ∈ Ω1, t2† ∈ Ω2, such that

f
(
t1†, t2†,A†) < f (t1∗, t2∗,Aopt (t1∗, t2∗)). For all (t1, t2) we have f(t1, t2) ≤

f (t1, t2,A), hence

f
(
t1†, t2†

)
≤ f
(
t1†, t2†,A†) < f (t1∗, t2∗,Aopt (t1∗, t2∗)) = f (t1∗, t2∗)

in contrast to the assumption. Thus (t1∗, t2∗,Aopt (t1∗, t2∗)) is a global minimizer
of the full problem in Ω1 × Ω2.
(ii) Let (t1∗, t2∗,A∗) be a global minimizer of the full problem for (t1, t2) ∈

Ω1 × Ω2 and let Aopt (t1∗, t2∗) = B1 (t1∗)
+Z
(
B2 (t2∗)

+)T . Then there holds
f (t1∗, t2∗) ≤ f (t1∗, t2∗,A∗). From the definition of the reduced functional one
has f (t1∗, t2∗) = f (t1∗, t2∗,Aopt (t1∗, t2∗)) ≤ f (t1∗, t2∗,A∗). Since (t1∗, t2∗,A∗)
is a global minimizer, equality holds, i. e.,

f (t1∗, t2∗) = f (t1∗, t2∗,A∗) .

If there is an unique A∗ among all minimizing triplets of f (t1, t2,A), it holds
A∗ = Aopt (t1∗, t2∗).
Let us assume that (t1∗, t2∗) is no global minimizer of the reduced problem

on Ω1 × Ω2, i. e., there exist
(
t1†, t2†

)
∈ Ω1 × Ω2 with f

(
t1†, t2†

)
< f (t1∗, t2∗).

Then, with A† = B1

(
t1†
)+
Z
(
B2

(
t2†
)+)T , we have

f
(
t1†, t2†

)
= f
(
t1†, t2†,A†) < f (t1∗, t2∗) = f (t1∗, t2∗,A∗)

in contrast to the assumption that (t1∗, t2∗,A∗) is a global minimizer of the full
problem.
From the argumentation one sees immediately that the statements carry over

to the case of nonlinear equality constraints s1(t1) = 0 and s2(t2) = 0.
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5 Bivariate tensor product splines with free knots.

After these preparations we can now apply the reduction technique to the full
smoothing problem (3.10), (3.8). By continuity arguments analogously to the
univariate case, see [27], [25, Theorem 4.2], we obtain

Theorem 5.1 (Existence of solutions to the reduced smoothing

problem).

Let the set of feasible knots
{
(t1, t2) ∈ R

l1× R
l2 : C1t1 − h1 ≥ 0,C2t2 − h2 ≥ 0

}
be nonempty, and let the following conditions be fulfilled for fixed r1 ∈ {0, . . . , q1},
0 ≤ q1 < k1 and r2 ∈ {0, . . . , q2}, 0 ≤ q2 < k2:

(C1) The knots satisfy τ 1
j1
< τ 1

j1+k1−q1
(j1 = q1 +1, . . . , n1) and τ 2

j2
< τ 2

j2+k2−q2

(j2 = q2 + 1, . . . , n2).

(C2) The regularity conditions m1 ≥ r1, µ1 > 0 and m2 ≥ r2, µ2 > 0 are met.

Then the reduced smoothing problem (3.11), (3.8) has a solution (t1∗, t2∗).
We further have the smoothness of the reduced functional and, by applying

Theorem 4.4, the equivalence of the full and reduced smoothing problem in the
following sense:

Theorem 5.2 (Correspondence between the full and reduced smooth-

ing problem).

Let (t1∗, t2∗) be a feasible knot sequence, i. e.,

(t1∗, t2∗) ∈
{
(t1, t2) ∈ R

l1× R
l2 : C1t1 − h1 ≥ 0,C2t2 − h2 ≥ 0

}
,

and let the following conditions be fulfilled for fixed r1 ∈ {0, . . . , q1}, 0 ≤ q1 < k1
and r2 ∈ {0, . . . , q2}, 0 ≤ q2 < k2:

(C1) The knots satisfy τ 1
j1
< τ 1

j1+k1−q1
(j1 = q1 +1, . . . , n1) and τ 2

j2
< τ 2

j2+k2−q2

(j2 = q2 + 1, . . . , n2).

(C2) The regularity conditions m1 ≥ r1, µ1 > 0 and m2 ≥ r2, µ2 > 0 are met.

(C3) The free knots (t1∗, t2∗) are simple, and there holds k1 ≥ 3 and k2 ≥ 3.

Then the following relations hold for the full smoothing problem (3.10), (3.8) and
the reduced smoothing problem (3.11), (3.8): The reduced function F is smooth
on the feasible set {(t1, t2) ∈ R

l1 × R
l2 : C1t1 − h1 ≥ 0,C2t2 − h2 ≥ 0}.

(a) If (t1∗, t2∗) is a critical point (or a global minimizer) of (3.11), (3.8) and
A∗ satisfies (3.6b) at the point (t1∗, t2∗), then (t1∗, t2∗,A∗) is a critical
point (or a global minimizer) of (3.10), (3.8) and it holds f(t1∗, t2∗) =
f(t1∗, t2∗,A∗).

(b) If (t1∗, t2∗,A∗) is a global minimizer of (3.10), (3.8), then (t1∗, t2∗) is a
global minimizer of (3.11), (3.8). It holds f(t1∗, t2∗) = f(t1∗, t2∗,A∗) and
(3.6b).

The last two Theorems are straightforward generalizations of the univariate
results. Note, however, that the expressions from Section 4 derived for the
gradient and Jacobian are crucial for efficient numerical methods.
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6 Numerical solution of the reduced problem.

After having shown the equivalence of the full and reduced problem in the
sense of Theorem 5.2 we will now consider the numerical solution of the reduced
problem.
The reduced problem is a nonlinear least squares problem in the variables t1

and t2 with linear inequality constraints. Formally the full problem resembles a
separable least squares problem with multiple right hand sides. Such a problem
can be expressed as 1

2 ‖Z−B1(t1)A‖2F → min t1,A, see [13] and [17].
A naive realization transforms the problem 1

2‖Z − B1(t1)ABT
2 (t

2)‖2F → min
into standard matrix-vector form 1

2‖ vec (Z)−(B2(t2)⊗B1(t1)) vec (A) ‖22 → min
and then applies the reduction technique. In this case we have to factorize the
large matrix B2 ⊗B1 ∈ R

(m1m2)×(n1n2) to compute the Jacobian of the reduced
functional. However, a closer investigation of the structure shows that in every
block of the Jacobian the same Fréchet derivative occurs. This structure has
to be exploited for the solution process, in particular when solving large scale
problems. In the case of separable least squares problems with multiple right
hand sides this has first been done in [13].
The method of choice for solving the reduced problem is a generalized Gauss–

Newton method. In every step one has to solve the quadratic model problem

ψ(t1 +∆t1, t2 +∆t2) :=
1
2
‖F(t1, t2) + ∂1F(t1, t2)[∆t1] + ∂2F(t1, t2)[∆t2]‖2F → min

∆t1∈Rl1 ,∆t2∈Rl2

subject to the constraints

C1t1 +C1∆t1 − h1 ≥ 0, C2t2 +C2∆t2 − h2 ≥ 0.

This yields

ψ =
1
2
‖F+ ∂1F∆t1 + ∂2F∆t2‖2F

=
1
2

∥∥∥∥F+
l1∑

κ=1

∂1F[eκ]∆t1κ +
l2∑

κ=1

∂2F[eκ]∆t2κ

∥∥∥∥
2

F

=
1
2

∥∥∥∥vec (F) +
l1∑

κ=1

vec (∂1F[eκ])∆t1κ +
l2∑

κ=1

vec (∂2F[eκ]) ∆t2κ

∥∥∥∥
2

2

=
1
2

∥∥∥∥vec (F) + J
(

∆t1

∆t2

)∥∥∥∥
2

2

with

J :=


vec (∂1F[e1]

)
· · ·vec

(
∂1F[el1 ]

)
vec
(
∂2F[e1]

)
· · ·vec

(
∂2F[el2 ]

)

 .
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The Jacobian J ∈ R
(m1+n1−r1)(m2+n2−r2)×(l1+l2) in the smoothing case (resp.

J ∈ R
(m1m2)×(l1+l2) in the approximation case), which is in general full, can be

computed column-wise.
When computing the Jacobian in the above way, the required QR factoriza-

tions of B1 and B2 for ∂1F and ∂2F have to be computed only once and can
then by applied to different right hand sides. All algorithms for the computa-
tion of the Jacobian—including the use of the Kaufman approximation and the
exploitation of sparsity—carry over from the univariate case. For example, in
the case of spline approximation we obtain the Jacobian

∂1F(t1, t2)[∆t1] = −
{
P⊥

B1
(∂1B1[∆t1])B+

1 +
(
P⊥

B1
(∂1B1[∆t1])B+

1

)T}
ZPB2

and the Kaufman approximation

JK(t1, t2)[∆t1] = −P⊥
B1
(∂1B1[∆t1])B+

1 ZPB2 .

This procedure bears great resemblance to the computation of the Jacobian
for separable least squares problems with multiple right hand sides. If we set
B2(t2) = I we arrive straightforward at the results of Golub/LeVeque as a spe-
cial case. The exploitation of structure for these problems has been intensively
investigated during the last years, see [17], [18], [11], [28]. Kaufman/Sylvester
report on a drastic reduction in computing time for real world problems with
thousands of parameters and millions of observations. While in this case the
linear least squares problems were full, Soo/Bates [28] investigate the additional
sparsity of the observation matrix. As one example they consider self-modeling
free-knot splines, but only in the univariate and not in the tensor product case.
In conclusion, it can be stated that the algorithms for the computation of the

Jacobian and the generalized Gauss–Newton method developed in [27], [25] for
the univariate case carry over to bivariate free knot splines, in principle.

7 Numerical tests.

For the computation of bivariate tensor product splines with free knots we have
implemented a method for the solution of the reduced problem in MATLAB. We
used the code FMINCON from the MATLAB Optimization Toolbox [5] and the
code NPSOL [12] on a Pentium 1 GHz processor. Both methods are SQP-
methods which use a BFGS-update of the Hessian of the Lagrangian. Gradients
have been computed via finite differences, but exact gradients are also available
using the formulae given in [25]. In all examples we took a1 = x1, b1 = xm1 and
a2 = y1, b2 = ym2 .

7.1 Bivariate Titanium Heat Data.

In our first example we consider the well-known Titanium Heat Data [2].
Building the tensor product of the univariate data, i.e., zi1,i2 = yi1 × yi2 , we
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get (m1 = 49) × (m2 = 49) points in [595, 1075]× [595, 1075], see Figure 7.1.
We want to approximate these 2401 data points by n1 = 11 cubic B-splines in
x-direction and n2 = 10 cubic B-splines in y-direction. Considering all inner
knots as free we achieve at l1 = 7 and l2 = 6.
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Figure 7.1: Bivariate Titanium Heat Data: data points
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Figure 7.2: Bivariate Titanium Heat Data: spline s, initial knot sequence
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If we choose equidistant interior knots we obtain the approximation shown in
Figure 7.2. Besides the oscillations in the flat part one observes that, in par-
ticular, the approximation near the peak is very poor. Optimizing the location
of the knots the oscillations disappear and the residual decreases to 5%. The
results are summarized in Table 7.1. Note that the MATLAB procedure cannot
achieve the desired accuracy. The resulting spline after the optimization with
NPSOL is shown in Figure 7.3. In Figure 7.4 we plot the location of the knots
and the corresponding contour before and after the optimization.

Table 7.1: Bivariate Titanium Heat Data: comparison of FMINCON and NPSOL

initial knot sequence FMINCON NPSOL

‖F‖ 9.777865 E+00 6.652674 E-01 5.057175 E-01

steps 87 56

function calls 1307 550

time [sec] 8.22 8.63

return code max. no. iterations successful
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Figure 7.3: Bivariate Titanium Heat Data: optimized location of knots, NPSOL

Above example clarifies the importance of a good knot sequence. Although
the residuals of both approximations do not differ by several magnitudes the
approximating spline with equidistant knots is, in fact, unusable due to its high
oscillations. By minimizing the least square error with respect to the free knots
not only the approximation error gets smaller, even the approximating spline
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Figure 7.4: Bivariate Titanium Heat Data: contour plot and knots before and after
the optimization

itself becomes visually more pleasant.

7.2 EOS Aluminium Data.

In a second example we use a standard data set for bivariate constrained ap-
proximation, see e.g. [4]. The (m1 = 10)×(m2 = 6) data points in [−0.07, 1.13]×
[−2.3, 0] describe an equation of state (EOS) for aluminium. Represented is pres-
sure as a function of density and temperature on a log-log scale. The data are
in monotone position, see Figure 7.5.
Although this data set is relatively small it is difficult to approximate. We

use n1 = 8 quadratic B-splines in x-direction, n2 = 5 quadratic B-splines in
y-direction and the smoothing parameters µ1 = µ2 = 1.0E-08, r1 = r2 = 2.
For equidistant inner knots we have the unsatisfying approximation shown in
Figure 7.6.
Optimizing the location of knots one obtains, for example with FMINCON,

the spline shown in Figure 7.7. The essential oscillations have disappeared.
Table 7.2 and Figure 7.8 summarize the results. The resulting approximating

Table 7.2: EOS Aluminium Data: comparison of FMINCON and NPSOL

initial knot sequence FMINCON NPSOL

‖F‖ 1.587922 E+01 1.228879 E+00 1.027007 E+00

steps 65 36

function calls 603 691

time [sec] 2.03 2.71

return code successful succesful
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Figure 7.5: EOS Aluminium Data: data set
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Figure 7.6: EOS Aluminium Data: spline s, initial knot sequence
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Figure 7.7: EOS Aluminium Data: optimized knots, FMINCON

spline is almost monotone, it holds min sy ≈ −12, max sy ≈ 86! Note that in this
example both methods abort in the case of pure spline approximation without
smoothing (µ1 = µ2 = 0) since rank deficient observation matrices—hence loss
of differentiability—do occur in the optimization process.
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Figure 7.8: EOS Aluminium Data: contour plot and knots before and after the opti-
mization

The almost-monotonicity suggests a further area of application for bivariate
free knot splines: In so-called fit-and-modify methods for constrained interpola-
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tion one has to provide good estimates for derivatives. The parameters of the
constrained spline are then computed in such a way that the resulting spline devi-
ates as small as possible from the given spline, but satisfies the shape constraints.
Since the derivatives of a bivariate free knot spline are of good quality, in gen-
eral, they qualify as starting parameters for fit-and-modify methods. Figure 7.9
represents a monotone interpolating spline that has been computed using a spe-
cial fit-and-modify interpolation method proposed in [23] by Schmidt/Bastian-
Walther.

Table 7.3: Comparison of our method with the fit-and-modify interpolation method
[23] by Schmidt/Walther

approximation type least squares approx. constrained interpolation

type of optimization problem nonlinear quadratic
constraints on derivatives unconstrained monotonicity

time [sec] 2.03 45.62
min sy −12 0
max sy 86 905
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Figure 7.9: EOS Aluminium Data: monotone spline, fit-and-modify interpolation
method [23] by Schmidt/Walther
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Table 7.3 compares both methods using the EOS Aluminium Data. By com-
bining both methods we expect substantial advantages since the unconstrained
free knot least squares spline will provide good initial derivative estimates for
the subsequent fit-and-modify iteration method so an essential reduction of com-
puting time can be expected.
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