
EMSEC

Efficient Implementation of a Generic Coprocessor

for Elliptic Curve Cryptography

on Reconfigurable Hardware

Ariano-Tim Donda

Master’s Thesis. October 13, 2015.

Chair for Embedded Security – Prof. Dr.-Ing. Christof Paar

Advisor: Prof. Dr.-Ing. Tim Güneysu

Acknowledgment

I would like to thank the company Rohde & Schwarz SIT GmbH to give me the oppor-
tunity to write my Master’s thesis there and for the exciting topic.

My special thanks goes to Dr. Simon Hauger and Dr. Torsten Schütze, for the best
advice during the work and especially for the assistance in the last weeks before deadline.

Last but not the least, I thank my fiancée Kerstin for supporting me spiritually
throughout writing this thesis and my life in general.

Abstract

This project is motivated by the need for a flexible and secure ECC implementation on
FPGAs at Rohde & Schwarz SIT GmbH. The coprocessor shall handle elliptic curves
over Fp, p > 3, prime with a verifiable pseudo-random prime structure, so not only NIST
curves should be possible. Different bit lengths of p must be supported.

One main task is the use of DSPs for fast arithmetic computations as much as possible
to save other resources on the FPGA. Particularly, the modular multiplication was exam-
ined more detailed. It is solved with the CIOS algorithm, a Montgomery multiplication
algorithm design especially for hardware. The hardware design of the CIOS algorithm
implemented in Mentens’ PhD thesis was the basis for our design.

For secure and efficient implementation of ECC scalar multiplication a special paral-
lelized Montgomery ladder is used which uses projective coordinates in (X , Z) represen-
tation.

The coprocessor must be protected/protectable against all kinds of Side-Channel Anal-
ysis. Montgomery ladder is used against SPA. Randomized projetive coordinates and
prime randomization were supported as a countermeasure against DPA.

We implemented the basic design of Mentens and modified it in various ways: First,
the 16×16 multiplier has been replaced by a 17×17 multiplier. Then the full capabilities
of multipliers on modern FPGAs has been used, i. e., a 17×24 multiplier. The design
and implementation produced with various optimizations regarding the number of DSPs
used and the number of pipeline stages. The coprocessor designed provides the improved
Montgomery multiplication by Walter, modular addition/subtraction as well as modular
inversion.

The designed coprocessor is faster than Mentens’ which is the most comparable de-
sign. Comparison with other implementations are not easy because of missing either
countermeasures against SCA, implementations for curves over F2m, or approaches that
do not allow flexible p.

i

Statutory Declaration

I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by another
person nor material which to a substantial extent has been accepted for the award of any
other degree or diploma of the university or other institute of higher learning, except
where due acknowledgment has been made in the text.

I affirm that the digital version is identical to the submitted written version. I hereby
agree that the digital version of this submission is used for plagiarism assessment.

Eidesstattliche Erklärung

Ich erkläre, dass ich keine Arbeit in gleicher oder ähnlicher Fassung bereits für eine andere
Prüfung an der Ruhr-Universität Bochum oder einer anderen Hochschule eingereicht
habe.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen benutzt habe. Die Stellen, die anderen Quellen dem Wortlaut oder
dem Sinn nach entnommen sind, habe ich unter Angabe der Quellen kenntlich gemacht.
Dies gilt sinngemäß auch für verwendete Zeichnungen, Skizzen, bildliche Darstellungen
und dergleichen.

Ich versichere auch, dass die von mir eingereichte schriftliche Version mit der digitalen
Version übereinstimmt. Ich erkläre mich damit einverstanden, dass die digitale Version
dieser Arbeit zwecks Plagiatsprüfung verwendet wird.

Ariano-Tim Donda

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Related Work for Fast Elliptic Curve Multipliers in Hardware 1
1.3 Research Aims . 2
1.4 Thesis Structure . 3

2 Elliptic Curve Cryptography 5

2.1 Finite Fields . 5
2.2 Point Addition and Doubling . 6

2.2.1 Affine Coordinates for Short Weierstrass Curves 7
2.2.2 Projective Coordinates for Short Weierstrass Curves 7
2.2.3 Reduced Projective Coordinates for Short Weierstrass Curves . . . 8
2.2.4 Comparison of the Shown ECC Representations 11

2.3 Scalar Multiplication . 12
2.3.1 Double-and-Add . 12
2.3.2 Double-and-Add-Always . 12
2.3.3 Montgomery Ladder . 13

2.4 Cryptographic Protocols and Algorithms 14
2.4.1 Elliptic Curve Digital Signature Algorithm (ECDSA) 14
2.4.2 Elliptic Curve Diffie Hellman (ECDH) 16
2.4.3 Elliptic Curve Integrated Encryption Scheme (ECIES) 16

2.5 Selected curve parameters . 18
2.6 Selected Side-Channel Analysis Countermeasures 20

2.6.1 Timing Analysis . 20
2.6.2 Montgomery Ladder . 20
2.6.3 Scalar Blinding . 21
2.6.4 Randomized Projective Coordinates 21
2.6.5 Prime Randomization . 22

3 Technical Background 23

3.1 Motivation and Basics of FPGAs . 23
3.2 Configurable Logic Blocks and Slices . 23
3.3 Digital Signal Processing Blocks . 25
3.4 Dedicated Block-RAM . 26

4 Elliptic Curve Arithmetics in Hardware 29

4.1 Efficient Scalar Multiplication using a Parallel Montgomery Ladder 29

iv Contents

4.2 Modular Multiplication – Montgomery Multiplication 31
4.3 Modular Adder and Subtractor . 33
4.4 Inversion . 34
4.5 Efficient Multiplier in FPGA using DSPs 35

5 Design and Implementation of the Coprocessor 39
5.1 Design Requirements . 39
5.2 Coprocessor . 39
5.3 Data Memory . 40
5.4 Coprocessor Control . 42
5.5 Arithmetic Unit . 44

5.5.1 Modular Multiplier MontMul . 44
5.5.1.1 MontMul using 17×17 Multiplication 47
5.5.1.2 MontMul using 17×24 Multiplication 51
5.5.1.3 More Efficient Usage of DSPs in Time 55
5.5.1.4 Higher Throughput by Removing Pipeline Stages 56

5.5.2 Adder and Subtractor . 56

6 Evaluation 59
6.1 Simulation and Experimental Validation in Hardware 59
6.2 Timing and Resource Consumption of CIOS Multipliers 60
6.3 Conditions for the Evaluation of the Coprocessor 61
6.4 Timing and Resource Consumption of Coprocessor 66
6.5 Comparison to Existing Work . 69

7 Conclusion 71

A Acronyms 73

B Explanation of Coprocessor Opcodes 75

C Further Diagrams for Evaluation 77

List of Figures 81

List of Tables 83

List of Algorithms 84

Bibliography 87

1 Introduction

1.1 Motivation

The topic of this project is the efficient design and efficient implementation of a coproces-
sor for Elliptic Curve Cryptography (ECC) over finite fields Fp on Field-Programmable
Gate Arrays (FPGAs). Some of the design constraints and feature requests are due to
the Rohde & Schwarz SIT GmbH which require a flexible and secure ECC implemen-
tation for high-assurance applications. These requirements could not be fulfilled with
general designs and IP cores on the COTS (commercial off-the-shelf) market.

Our implementation will be used as part of a larger undisclosed project. The coproces-
sor should be flexible regarding the bit length. It should allow various implementation
techniques including countermeasures against Side-Channel Analysis (SCA) and should
not rely on special certain structures for the prime p, for example, so-called National
Institute of Standards and Technology (NIST) or Solinas primes (Generalized Mersenne
primes).

Today, ECC is one of the favored schemes for asymmetric cryptography. ECC key
sizes are much smaller than key sizes for traditional schemes like RSA for approximately
corresponding security strengths. For example, ECC with 384 bit is roughly equivalent
to RSA with 8 192 bit [HMV04].1 While the number field sieve for factoring is the most
efficient method known to attack RSA encryption, there is no known sub-exponential
algorithm to attack carefully chosen elliptic curves.

Although ECC has only been established in practical cryptography in the last decade,
it has been independently introduced Victor S. Miller in [Mil85] and Neal Koblitz
in [Kob87].

1.2 Related Work for Fast Elliptic Curve Multipliers in

Hardware

Highly performant implementations often use ECC over the finite field F2m . However,
for high-security applications, especially in Germany, the finite field Fp, p > 3, prime is
used. Existing work on coprocessors for ECC over Fp can be summarized as follows:

Orlando and Paar [OP01] designed an ECC coprocessor in Fp. They use a high-radix
Montgomery multiplier with Booth re-coding. For reduction, they pre-compute common
values. Their architecture uses special prime structures (General Mersenne primes) and,

1ECC with 384 bit security level or even with 521 bit can be found in current smart card implementations
while RSA 2 048 bit is the upper limit for these cards.

2 1 Introduction

thus, seems not flexible enough for our purposes. No dedicated multipliers/Digital Signal
Processing Blocks (DSPs) on the FPGA are used.

The paper [GP08] uses DSPs extensively and, therefore, achieves a very high perfor-
mance. However, this work is for NIST primes only, too. Another recent paper from the
Ruhr University Bochum is [SG14]. Here, the even more special curve Curve25519 over
Fp with p = 2255 − 19 is used.

All these approaches do not provide required flexibility.

In [Gui10] a coprocessor for general curves over Fp has been designed. Its arithmetic
unit uses a Residue Number System (RNS) representation. Furthermore, some counter-
measures against SCA are built-in.

Mentens [Men07] and Ma et al. [MLPJ13] use Montgomery multipliers to replace
RNS. All these papers utilize the DSPs on modern FPGAs for fast multiplication.

Although the performance and area results reported in [Gui10] and its successors are
impressive, we decided not to follow a RNS approach, because Montgomery multipliers
seem more flexible with respect to varying bit length.

In particular, the PhD thesis of Nele Mentens [Men07] builds an important founda-
tion for our work. Two efficient hardware algorithms were compared in modular multi-
plication using Montgomery reduction. Presented results and designs of the multipliers
serve as a basis for the multipliers in this work.

1.3 Research Aims

The project aim is a flexible and secure ECC implementation on FPGAs with some
required design constraints to the coprocessor architecture. The given hardware is a
Xilinx 7-Series Kintex XC7K325T and generic curves over Fp must be supported. The
coprocessor must allow efficient randomization for protection against SCA. This includes
not only scalar blinding and projective coordinates, but randomization of the prime as
well. Brainpool curves serve as an example for general curves with verifiable pseudo-
random prime structure. To resist Simple Power Analysis (SPA) the coprocessor should
support the use of a Montgomery ladder. The design must be easily modifiable with
respect to bit length. In addition, for fast arithmetic DSPs must be adopted where
appropriate. On the other hand, other logic resources shall be omitted.

Several different designs varying in area and speed have been implemented and tested.
The designs differ in their usage of DSPs and the number of pipeline stages. The final
design is comparable to related work. However, it should be noted that flexibility and
security is much more important in our design than speed (and area).

A complete implementation of fully protected ECC primitives exceeds the project
scope. Further steps would be necessary including a host interface connection from
a soft microprocessor core in the FPGA to the coprocessor and, only then, a highly
efficient and secure side-channel protected implementation of various ECC primitives
and protocols.

1.4 Thesis Structure 3

1.4 Thesis Structure

This document comprises seven chapters:
Chapter 2 introduces to Elliptic Curve Cryptography and its arithmetics. It is shown

how to calculate in groups over elliptic curves and some typical protocols which use ECC.
A short description of selected curve parameters and selected SCA countermeasures is
included.

Chapter 3 explains the core structure of an FPGA. For the design essential compo-
nents are described in more detail.

Chapter 4 provides a short overview of the required arithmetics. Especially, techniques
for modular multiplication will be considered in detail. The work of Mentens will be
analyzed in more detail.

Chapter 5 starts with an overview of the coprocessor designed. First, the complete
design is shown and then it is explained in a top-down approach. The focus of the
coprocessor is on the Arithmetic Unit (AU) and its usage of multipliers.

In Chapter 6 the designed coprocessor is carefully analyzed and tested. To compare
the modular multiplier and the arithmetic unit to existing ECC implementations, it is
necessary to define a sequence of required steps for one scalar multiplication utilizing
our new coprocessor.

Chapter 7 concludes the thesis, points out open problems, and denotes some further
steps.

2 Elliptic Curve Cryptography

Usually, the pyramid in Figure 2.1 is used to show the different levels of ECC. The top
is the use of ECC represented by the protocols and algorithms. They define how ECC
must be used to avoid obvious attacks. Next level is the key operation of ECC. The
complete security of ECC is based on the scalar multiplication of a point P (Discrete
Logarithm Problem). It essentially consists of the both general curve operations point
addition and doubling. Point addition and point doubling break down to operations in
certain finite fields, especially, in our case to modular multiplications, modular additions,
etc.

Figure 2.1: Pyramid shows the different elementary levels of using ECC.

The next sections explain the different levels of this pyramid more detailed in a bottom-
up approach. Furthermore, different properties of specific curves are explained and also
advantages and disadvantages are discussed.

2.1 Finite Fields

A finite field or Galois field is a set of elements with two basic operations. A finite field
will be denoted by Fq where q is the number of elements. Before giving the definition for
finite fields we first need the definition of a simpler algebraic structure, Abelian groups.
The definitions are from [PP10].

Abelian group: An Abelian group is a set of elements G together with an operation ◦
which combines two elements of G. An Abelian group has the following properties:

6 2 Elliptic Curve Cryptography

1. The group operation ◦ is closed. It holds that a ◦ b = c ∈ G for all a, b, c ∈ G.

2. The group operation is associative. That is, a ◦ (b ◦ c) = (a ◦ b) ◦ c for all
a, b, c ∈ G.

3. There is an element 1 ∈ G, called the neutral element (or identity element),
such that a ◦ 1 = 1 ◦ a = a for all a ∈ G.

4. For each a ∈ G there exists an element a−1 ∈ G, called the inverse of a, such
that a ◦ a−1 = a−1 ◦ a = 1.

5. A group G is abelian (or commutative) if, furthermore, a ◦ b = b ◦ a for all
a, b ∈ G.

Usually, Abelian groups with the operation + are called additive Abelian group and
with · are called multiplicative Abelian group. While groups only provide one operation
finite fields are sets which have two operations. So finite fields must satisfy following
further requirements:

Finite field: A finite field Fq is a set of a finite number of q elements in combination
with two operations + and · with following properties:

1. All elements of F form an additive group with the group operator + and the
neutral element 0.

2. All elements of F form a multiplicative group with the group operation · and
the neutral element 1.

3. When two group operations are mixed, the distributivity law holds, i. e., for
all a, b, c ∈ Fq : a · (b + c) = (a · b) + (a · c).

For cryptography, two types of finite fields are mainly used. In Fp the elements are
integers and the order is a prime. The other type of fields is denoted by F2m where the
elements can be represented as m-bit vectors. This kind of finite field is popular because
of efficient arithmetic shortcuts. However, this work deals with a coprocessor design for
curves over Fp with p > 3 and p is prime, thus, we use in the following arithmetics of
finite fields over general primes.

2.2 Point Addition and Doubling

Current practically relevant public-key algorithms can be categorized into three families:
First, algorithms based on integer factorization (like RSA), second, algorithms based on
discrete logarithm over finite fields (like DSA), and third, algorithms based on discrete
logarithm using elliptic curves (like ECDSA). ECC schemes gain more importance with
stricter security requirements. The required bit length for ECC algorithms grows slower
than keys for traditional schemes. In the next subsections we explain the functionality
of elliptic curve schemes.

2.2 Point Addition and Doubling 7

2.2.1 Affine Coordinates for Short Weierstrass Curves

The set of all pairs (x , y) ∈ Fp × Fp satisfying the equation

y 2 = x 3 + ax + b mod p, (2.1)

where a, b ∈ Fp and
4a3 + 27b2 6= 0 mod p, (2.2)

together with the special point O is called elliptic curve E over Fp with parameters a, b.
The point O is called point at infinity. It represents the neutral element.

Equation (2.1) is called Simplified or Short Weierstrass Equation. It is a normal form,
i. e., all elliptic curves over Fp can be represented in this form. It is also possible to define
elliptic curves over other finite fields such as F2m , m ∈ N, see [Bro10, ANSI-X9.63:11,
FIPS-186-4:13], or Fpm, p > 3, prime, m ∈ N, see [ISO-15946-1:02]. However, we consider
only curves over large prime fields Fp, p > 3, prime are considered.

The set of points of the elliptic curve forms an additive Abelian group with the point
at infinity O as neutral element and the following operations:

Let P = (x 1, y 1) and Q = (x 2, y 2) be elements of E and P, Q 6= O. If x 1 = x 2 and
y 1 = −y 2, then P + Q = O, otherwise P + Q = (x 3, y 3) with

x 3 = s2 − x 1 − x 2 mod p, y 3 = s(x 1 − x 3)− y 1 mod p, (2.3a)

and

s =

y
2
−y

1

x 2−x 1

if P 6= Q,
3x 2+a

2y
if P = Q.

(2.3b)

The point at infinity O is the identity over E, so P + O = O + P = P for all P ∈ E.
The operation of P + Q with P 6= Q is named Point Addition and if P = Q then it is
named Point Doubling. The pair (x , y) ∈ E, x , y ∈ Fp are called affine coordinates.

2.2.2 Projective Coordinates for Short Weierstrass Curves

The point addition defined in (2.3a) and (2.3b) can be implemented with one inversion
and three multiplications in Fp, the point doubling with one inversion and four multi-
plications in Fp. In practice, the affine representation of the elements in E is rarely
used, because computations with affine coordinates require many inversions, and there
are many special cases (P = −Q, one of the points is O) in the addition equation. Such
special cases can easily be distinguished, for example, in the power trace. Special cases
are prone to SCA and should be avoided.

Fortunately, there are many different equivalent representations of elliptic curves with
other coordinates and better properties. Projective coordinates are valuable for secure
implementations.

Simple (standard) projective or homogeneous coordinates map a point (X , Y , Z) of
the projective plane to the point (x , y) = (X/Z, Y /Z) of the affine plane. Other projective

8 2 Elliptic Curve Cryptography

coordinates which allow efficient implementations are weighted projective or Jacobian
coordinates with (X , Y , Z) ≡ (X/Z2, Y /Z 3) or Chudnovsky projective coordinates with
(X , Y , Z , Z2, Z 3) ≡ (X/Z2, Y /Z 3). However, Chudnovsky coordinates need more registers
than simple coordinates and Jacobian coordinates are not useful for the scenario in this
work, too.

There exists a Montgomery ladder for projective coordinates that requires 19 modular
multiplications per bit, see [BJ02]. Later [JY02] showed that such a ladder exists for
every Abelian group. Nevertheless, the Montgomery ladder for Jacobian coordinates is
not as efficient as the one for projective coordinates. Hence, we focus on simple projective
coordinates which are defined below.

Let P = (X , Y , Z) with X , Y , Z ∈ Fp be a point of the elliptic curve in homogeneous
coordinates. If Z 6= 0, the projective point P = (X , Y , Z) is equivalent to the affine point
P = (x , y) = (X/Z, Y /Z). The point (0, 1, 0) corresponds to the neutral element O. This
special coordinate is defined to avoid special routines in case of P + O.

The (non-randomized) transformation from affine to projective coordinates is trivial

(x , y)→ (X , Y , 1),

while the transformation from projective to affine coordinates requires one inversion and
two multiplications.

The short Weierstrass equation (2.1) in projective homogeneous coordinates is given
by

Y 2Z = X 3 + aX Z2 + bZ3 mod p. (2.4)

With this representation of the points over E there are some benefits:

• Point addition requires 14 modular multiplications and point doubling 11modular
multiplications, respectively, see [BL15a, CMO98].

• There are no conditional branches due to the point O.

• There are many representations from one affine point to projective points. This
constitutes a natural randomization and is one of the standard countermeasures
against SCA such as Differential Power Analysis (DPA) and Timing Analysis (TA)
[Cor99].

2.2.3 Reduced Projective Coordinates for Short Weierstrass Curves

In affine coordinates the y -value only represents the sign of the coordinate, its security
weight is therefore only one bit. Clearly, it is beneficial to keep any costs small for
only one bit. For affine coordinates, this leads naturally to so-called compressed affine
points. However, we aim to eliminate Y in the homogeneous coordinate (X , Y , Z) from
the preceding subsection as well. In the following, there is the derivation of Brier and
Joye [BJ02] of the addition of two points P and Q using only the X and Z coordinates.
Note that the special coordinates and algorithms of point addition and doubling are only
used in context with the Montgomery Ladder, see Section 2.3.3.

2.2 Point Addition and Doubling 9

For P, Q ∈ E(Fp) let us introduce the notation

P = (x 1, y 1) ≡ (X 1, Y 1, Z 1), Q = (x 2, y 2) ≡ (X 2, Y 2, Z2),

P + Q = (x 3, y 3) ≡ (X 3, Y 3, Z 3), P −Q = (x 4, y 4) ≡ (X 4, Y 4, Z4), and

2P = (x 5, y 5) ≡ (X 5, Y 5, Z 5).

It follows from (2.3a) for P 6= ±Q

x 3 =
(

y 1 − y 2

x 1 − x 2

)2

− x 1 − x 2, (2.5a)

and

x 3 =
(

y 1 − y 2

x 1 − x 2

)2

− x 1 − x 2 (2.5b)

Combination of (2.5a) and (2.5b) gives the following equation for point addition (see
[BJ02]):

(x 3 + x 4) (x 1 − x 2)
2 = 2 (x 1 + x 2) (x 1x 2 + a) + 4b. (2.6)

For x 5 with P 6= O it follows

x 5 =

(
3x 2

1 + a

2y 1

)2

− 2x 1. (2.7)

By substitution of 2y 1 with (2.4) it follows

4x 5(x
3
1 + ax 1 + b) = (x 2

1 − a)2 − 8bx 1. (2.8)

The next step is to switch the representation from affine to projective coordinates and
obtain an equation for calculating X 3, Z 3 and X 5, Z5 using the projective coordinates
X 1, Z1, X 2, Z 2. Let x i = X i/Zi, i = {1, . . . , 5}. For x 3 follows

(x 3 + x 4)
(

X 1

Z 1
−

X 2

Z 2

)2

= 2
(

X 1

Z1
−

X 2

Z2

)(
X 1X 2

Z1Z2
+ a

)
+ 4b,

(x 3 + x 4) (X 1Z2 − X 2Z1)
2 = 2 (X 1Z2 + X 2Z1) (X 1X 2 + aZ1Z2) + 4bZ2

1Z2
2,

and finally

x 3 (X 1Z2 − X 2Z1)
2 = 2 (X 1Z2 + X 2Z1) (X 1X 2 + aZ1Z2)

+ 4bZ2
1Z2

2 − x 4 (X 1Z2 − X 2Z1)
2 . (2.9)

These reduced projective coordinates are only usable for scalar multiplication kP with
a special Montgomery ladder, which is explained later in Section 4.1. Therefore X 1/Z1

and X 2/Z2 are always the representation of the affine x-coordinate of two points. The

10 2 Elliptic Curve Cryptography

difference of these two points is P 6≡ O. Without loss of generality we set Z4 = 1. This
assumption simplifies the equations and saves one multiplication. It follows

X 3 = 2 (X 1Z2 + X 2Z1) (X 1X 2 + aZ1Z2) + 4bZ2
1Z2

2 − X 4 (X 1Z2 − X 2Z1)
2 (2.10a)

and

Z3 = (X 1Z2 − X 2Z1)
2 . (2.10b)

For the point addition (2.10) 10 modular multiplications are required.
For x 5 follows

4x 5

(
X 3

1Z1 + aX 1Z3
1 + bZ4

1

)
=
(

X 2
1 − aZ2

1

)2
− 8bX 1Z3

1

and the following equations for calculating the resulting X and Z

X 5 =
(

X 2
1 − aZ2

1

)2
− 8bX 1Z3

1 (2.11a)

and

Z5 = 4X 1Z1

(
X 2

1 + aZ2
1

)
+ 4bZ4

1. (2.11b)

For the point doubling (2.11) 9 modular multiplications are required.
Often affine coordinates are given as input and required as output. Moreover, it is

well known that projective coordinates leak information, see [NSS04]. It is necessary to
convert back to affine coordinates after finishing the scalar multiplication kP .

The back transformation of x kP is equal to simple projective representation. If ZkP =
0, then kP = O. Otherwise it holds

x kP =
X kP

ZkP
(2.12)

which can be calculated with one inversion and one multiplication.
For back transformation of y kP it is assumed that P = (x 1, y 1), x kP = X kP/ZkP , and

x (k+1)P = X (k+1)P/Z (k+1)P . With equation (2.3a) it follows for (k + 1)P = kP + P

x (k+1)P =
(

y kP − y 1

x kP − x 1

)2

− x kP − x 1. (2.13)

After substitution of the terms y 2
kP and y 2

1 with curve equation (2.1) it follows

x (k+1)P (x kP − x 1)
2 = y 2

kP − 2y kP y 1 + y 2
1 − (x kP + x 1) (x kP − x 1) ,

= x 3
kP + ax kP + b− 2y kP y 1 + x 3

1 + ax 1 + b−
(

x 2
kP − x 2

1

)
.

Thus,

2y kP y 1 = 2b− x (k+1)P (x kP − x 1)
2 + (x 1x kP + a) (x 1 + x kP) ,

2.2 Point Addition and Doubling 11

and finally in projective representation

y kP =
2bZ2

kP Z (k+1)P + Z (k+1)P (X 1X kP + aZkP)− X (k+1)P (X kP − X 1ZkP)
2

2y 1Z2
kP Z (k+1)P

. (2.14)

Hence with both equations (2.12) and (2.14) it is possible to transform the results of
the Montgomery ladder (X kP , ZkP), (X (k+1)P , Z (k+1)P) (in projective (X ,Z)-form) back
to an affine one (x kP , y kP) without loosing any information. The back transformation
requires expensive inversions and multiplications. However, this step must be performed
only once after a scalar multiplication.

2.2.4 Comparison of the Shown ECC Representations

Every one of the three explained representations of points on elliptic curves has its bene-
fits. Often affine representation is given because projective coordinates leak information
[NSS04]. However, the computation in affine representation is expensive because of the
required inversion in each point addition and point doubling. Therefore, the projective
representation is preferred due to the inversion is only required for back transformation.

The different costs for point addition and doubling are listed in Table 2.1. The costs
for projective coordinates are taken from [BL15a, CMO98]. Costs for affine coordinates
are taken from equation (2.3), costs for reduced projective coordinates are taken from
equations (2.10) and (2.11). I represents the required inversion and M the multiplication
respectively. Note that costs for addition/subtraction are neglected because they are not
time-consuming operations.

Table 2.1: Overview of costs of point addition and doubling in different coordinate representa-
tions.

Coordinates
Operation Affine Projective (X , Y , Z) Reduced Projective (X , Z)

Point Addition 1I + 3M 14 M 10 M
Point Doubling 1I + 4M 11 M 9 M

Both projective representations need more multiplications than the affine represen-
tation. But one inversion is much more expensive than one multiplication. Hence, the
computation in projective representation should be preferred. It is obvious that the calcu-
lation with reduced projective representation is more efficient than with simple projective
representation. Due to the fact that for reduced projective coordinates the Montgomery
ladder given by [FGKS02] must be used, it implies a countermeasure against TA and
SPA. This fact is shown later in this work. Therefore, we use the reduced projective
representation for computation.

12 2 Elliptic Curve Cryptography

2.3 Scalar Multiplication

Cryptography using elliptic curves is based on the difficulty of solving the Elliptic Curve
Discrete Logarithm Problem (ECDLP). It is the main security criteria for ECC and
describes the problem to find the factor d ∈ N for the given points P, Q ∈ E(Fp) with
Q = dP .

The simplest way to compute the scalar multiplication or point multiplication dP is
to add d times the point P . In the following subsections we are providing more efficient
algorithms to perform scalar multiplication.

2.3.1 Double-and-Add

Similar to exponentiation in multiplicative groups it is possible to compute the scalar
multiplication similar to the square-and-multiply algorithm. Instead of squaring we
double points and instead of multiplication we use point addition. Algorithm 2.3.1
presents the Double-and-Add algorithm for scalar multiplication.

Algorithm 2.3.1: Double-and-Add for Scalar Multiplication

Input: elliptic curve E with an elliptic curve point P and a scalar d =
∑n−1

i=0 di2i

with di ∈ {0, 1} and dn−1 = 1
Output: T = dP

1 T ← P
2 for i = n− 1 downto 0 do
3 T ← T + T
4 if di = 1 then
5 T ← T + P

6 return T

The algorithm goes through every bit of d. If the bit di is 0 point T will be doubled
only. Otherwise, if di is 1 T will be added with P additionally. It requires n point
doublings and on average n/2 point additions, where n is the length of scalar d.

2.3.2 Double-and-Add-Always

A SPA is an efficient attack on Algorithm 2.3.1. Due to the increased time complexity
of point doubling with addition than point doubling without addition, one can simply
extract the key from the power consumption trace. The power consumption should be
independent of the current key.

A simple solution to achieve a uniform power consumption is to always double and
add for scalar multiplication. This algorithm shown as Algorithm 2.3.2 was already
suggested by Coron [Cor99].

One draw back of Algorithm 2.3.2 is that the branch in line 5 may be still extractable
in a power trace. Algorithm 2.3.2 requires n point doublings and n point additions.

2.3 Scalar Multiplication 13

Algorithm 2.3.2: Double-and-Add-Always for Scalar Multiplication

Input: elliptic curve E with an elliptic curve point P and a scalar d =
∑n−1

i=0 di2i

with di ∈ {0, 1} and dn−1 = 1
Output: T = dP

1 T0 ← P
2 for i = n− 1 downto 0 do
3 T0 ← T0 + T0

4 T1 ← T0 + P
5 if di = 1 then
6 T0 ← T1

7 return T0

2.3.3 Montgomery Ladder

A better way to circumvent the timing and SPA issues is the use of a Montgomery Ladder
as shown in Algorithm 2.3.3.

Algorithm 2.3.3: Montgomery Ladder for Scalar Multiplication

Input: elliptic curve E with an elliptic curve point P and a scalar d =
∑n−1

i=0 di2i

with di ∈ {0, 1} and dn−1 = 1
Output: T = dP

1 T0 ← O

2 T1 ← P
3 for i = n− 1 downto 0 do
4 if di = 1 then
5 T0 ← T0 + T1

6 T1 ← T1 + T1

7 else
8 T1 ← T0 + T1

9 T0 ← T0 + T0

10 return T0

At every iteration, we have the same operations (double and add) all results are used
without temporary results and only the registers change. So the power trace is uniformly
distributed.

Originally, the Montgomery ladder was introduced by Montgomery [Mon87] for so-
called Montgomery curves, a special class of elliptic curves. The Montgomery ladder for
general short Weierstrass curves is given by [BJ02].

14 2 Elliptic Curve Cryptography

2.4 Cryptographic Protocols and Algorithms

Many protocols like Transport Layer Security (TLS), IPSec, and Vehicle-to-Vehicle com-
munication use cryptography to increase their security in various ways. TLS and IPSec
currently use Elliptic Curve Digital Signature Algorithm (ECDSA) for digital signatures
and Elliptic Curve Diffie Hellman (ECDH) for authentication purposes. The Vehicle-to-
Vehicle standard IEEE P1609.2 uses digital signatures (ECDSA) and hybrid encryption
Elliptic Curve Integrated Encryption Scheme (ECIES). In this section three common
protocols and algorithms that use ECC are explained.

In case of ECC public parameters have to be known by every participant of the
communication protocol. These are the domain parameters D = {p, a, b, G, n, h} with

• p is the order of the finite field Fp,

• a and b are the two coefficients that define the elliptic curve E in short Weierstrass
form,

• G is the base point which generates a cyclic group 〈G〉,

• n is the order of the base point G, i. e., the order of the group 〈G〉, and

• h defines the cofactor with h = #E(Fp)/n, #E denotes number of points on E.

In special cases, additional parameters that describe the generation process of the elliptic
curve can be added to the domain parameters. More restrictions and properties for
selected curve parameters are described in Section 2.5.

2.4.1 Elliptic Curve Digital Signature Algorithm (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a special variant of Dig-
ital Signature Algorithm (DSA) which uses ECC. It is standardized, for example, in
[FIPS-186-4:13] and [ANSI-X9.62:98].

In ECDSA a key pair consists of a private key d and a public key Q with Q = dG and
d ∈R {1, . . . , n− 1}. After generation of the key pair (d, Q) it is required that the point
Q is not the point of infinity. Further, the coordinate values x Q, y Q ∈ [0, p − 1] and the
point Q = (x Q, y Q) must be a point on the curve E.

Algorithm 2.4.1 shows the ECDSA signature generation algorithm and Algorithm 2.4.2
shows the ECDSA signature verification algorithm where H is a cryptographic hash
function with appropriate output length and π is a function to convert the x-coordinate
to an integer. For signature generation k will be chosen randomly and the point kG will
be computed. The x -coordinate of kG is applied as reference value r for the signature.
For validation also k must be known. Therefore, k is hidden in s with reference to the
private key d. Thus, it was ensured that the signature only can be verified with the
corresponding public key Q. The resulting signature is (r, s).

For signature validation the point kG must be computed with s and the public key
Q. If all verifications are successful generated π(x R) must be compared with r. If it is
equally the algorithm returns ACCEPT and REJECT otherwise.

2.4 Cryptographic Protocols and Algorithms 15

Algorithm 2.4.1: ECDSA signature generation

Input: Domain Parameters D = {p, a, b, G, n, h}, private key d, message m
Output: Signature (r, s)

1 k ∈R [1, n − 1]
2 (x 1, y 1)← kG
3 r ← π(x 1) mod n
4 if r = 0 then
5 go to line 1

6 s← k−1(H(m) + dr) mod n
7 if s = 0 then
8 go to line 1

9 return (r, s)

Algorithm 2.4.2: ECDSA signature verification

Input: Domain Parameters D = {p, a, b, G, n, h}, public key Q, message m,
signature (r, s)

Output: Acceptance or rejection of the signature
1 if r, s 6∈ [1, n − 1] then
2 return REJECT

3 w ← s−1 mod n
4 u1 ← H(m)w mod n
5 u2 ← rw mod n
6 R← u1G + u2Q
7 if R = O then
8 return REJECT

9 v ← π(x R) mod n
10 if v = r then
11 return ACCEPT
12 else
13 return REJECT

16 2 Elliptic Curve Cryptography

Note that ECDSA signature generation requires one scalar multiplication with the
ephemeral secret scalar k while ECDSA signature verification requires two scalar multi-
plications or one multi-scalar multiplication with non-secret input.

2.4.2 Elliptic Curve Diffie Hellman (ECDH)

Another application of ECC is the key agreement with Elliptic Curve Diffie Hellman
(ECDH). ECDH is a mechanism to establish a shared secret key between two en-
tities. The basic form of Diffie-Hellman key exchange was published by Whitfield
Diffie and Martin Hellman in [DH76]. This classical variant, i. e. unauthenticated
Diffie-Hellman, is vulnerable against man-in-the-middle attacks. We present the Station-
to-Station (STS) protocol, a variant of the Diffie-Hellman key exchange that provides
forward secrecy using an ephemeral authenticated ECDH. The method presented was
originally introduced in [ANSI-X9.63:11].

Protocol 2.2 constitutes a key agreement protocol. In the following, D are elliptic
curve domain parameters, MACk is a Message Authentication Code (MAC) algorithm
and SIGNk is the signature generation algorithm. The protocol terminates with failure
if any verification fails.

Alice calculates a random point RA and sends it along to Bob with her identity IDA.
Bob computes an ephemeral random point RB and is able to generate the shared secret
point Z. Then, Bob computes the two keys k1 and k2 with key derivation function
KDF and the x-coordinate of Z. Besides, he creates a signature sB with his private key
privKeyB and a MAC tB with secret key k1. Finally, Bob sends IDB, RB , sB, and tB

to Alice. Now, Alice generates k1 and k2, too. She verifies sB and tB and sends her
signature sA and MAC tA to Bob for verification.

After running this protocol Alice and Bob agreed on a shared secret Z, which is derived
from both ephemeral public keys RA and RB . The complete agreement is authenticated
with secret key k1. The resulting session key is k2. Each party requires two scalar
multiplications for one mutual key agreement using ECDH STS.

2.4.3 Elliptic Curve Integrated Encryption Scheme (ECIES)

The Elliptic Curve Integrated Encryption Scheme (ECIES) is a variant of the ElGa-
mal public-key encryption scheme and has been standardized in [ANSI-X9.63:11] and
[ISO-18033-2:06].

Similar to ECDSA one key pair (d, Q) is required with Q = dG and d ∈R {1, . . . , n−1}.
The key pair shall be verified in the same way as in ECDSA. It is recommended to use
a key pair generated for ECIES encryption and decryption only. If ECIES and ECDSA
are used, each requires an independent key pair.

ECIES will be used for secure encryption with MAC for integrity assurance. The
real bulk encryption is a symmetric-key encryption scheme. Both, ECIES encryption
and decryption, are shown in the following algorithms with the following cryptographic
primitives: KDF is a key derivation function constructed by a hash function H, ENC
and DEC are encryption and decryption functions for symmetric-key encryption scheme,

2.4 Cryptographic Protocols and Algorithms 17

Alice Bob

D = {p, a, b, G, n, h} D = {p, a, b, G, n, h}

kA ∈R [1, n − 1]
RA = kAG

−
IDA, RA

−−−−−−−−−−−−−→
kB ∈R [1, n − 1]
RB = kBG
Z = hkBRA, verify Z 6= O

(k1, k2) = KDF(xZ)
sB = SIGNprivKeyB

(RB , RA, IDA)
tB = MACk1

(RB , RA, IDA)

←−
IDB, RB , sB , tB
−−−−−−−−−−−−−

Z = hkARB , verify Z 6= O

(k1, k2) = KDF(xZ)
verify Signature sB

verify MAC tB

sA = SIGNprivKeyA
(RA, RB , IDB)

tA = MACk1
(RA, RB , IDB)

−
sA, tA

−−−−−−−−−−−−−→
verify Signature sA

verify MAC tA

Figure 2.2: ECDH Station-to-Station Protocol.

18 2 Elliptic Curve Cryptography

and MAC is a message authentication code algorithm. With a static public key Q and
an ephemeral public key R the KDF derives two keys, k1 for encryption and decryption
and k2 for MAC. The complete encrypted message consists of the ephemeral public key
R, the ciphertext C, and the MAC t. With the own private key d, the ephemeral public
key R, and the KDF the receiver is able to derive the keys k1 and k2. If the check of the
MAC t succeeds, the ciphertext can be decrypted.

Algorithm 2.4.3: ECIES encryption

Input: Domain Parameters D = {p, a, b, G, n, h}, public key Q, plaintext m
Output: Ciphertext (R, C, t)

1 k ∈R [1, n − 1]
2 R = kG and Z = hkQ
3 (k1, k2) = KDF(x Z , R)
4 C = ENCk1

(m)
5 t = MACk2

(C)
6 return (R, C, t)

Algorithm 2.4.4: ECIES decryption

Input: Domain Parameters D = {p, a, b, G, n, h}, private key d, ciphertext (R, C, t)
Output: Plaintext m or rejection of ciphertext

1 if R is not valid point of E then
2 return REJECT

3 Z = hdR, Z 6= O

4 if Z = O then
5 return REJECT

6 (k1, k2) = KDF(x Z , R)
7 t′ = MACk2

(C)
8 if t′ 6= t then
9 return REJECT

10 m = DECk1
(C)

11 return m

Two scalar multiplications are needed for encryption. For the decryption only one
scalar multiplication is required because the ephemeral public key R is already given.

2.5 Selected curve parameters

The security of ECC is based on the difficulty of solving the ECDLP. For specific
elliptic curves (anomalous, singular, etc.) this problem is too easy to solve. Careful
selection of ECC parameters is therefore very important. More recently there has been

2.5 Selected curve parameters 19

discussion about the (in)security of National Institute of Standards and Technology
(NIST) and Brainpool curves, see [BCC+14] and [BL15b]. Lochter et al. [LMSS14,
LMSS15] discuss requirements for high-assurance and hardware-based ECC.

Currently, various groups like IRTF/CFRG, IETF/TLS WG and W3C/Web Crypto
WG are actively discussing the standardization of new curve parameters. One goal is to
define curves that are generated by a verifiable, trustworthy process. This is motivated
by a loss of confidence in NIST curves. NIST has been the first organization that stan-
dardized elliptic curve algorithms for cryptography and parameters for selected curves.
Today there are no weaknesses of the NIST curves publically known, but the origin of
some constants (seeds for hash input) is not justified [LMSS15].

Another issue of the current selection process is the balance between the competing
goals: security, performance, and flexibility. It is desirable to have fast ECC algorithms,
but there it is necessary to find a balance between security and performance. In our
work we consider the scenario of hostile environments. In such scenarios an “adversary
has full access to the implementation and all potential side-channels.” [LMSS15] The
authors rank security and flexibility over performance.

One important lesson from the current discussion is that countermeasures against
SCA must be included into the selection process. Many other groups defined curves
for very fast computing due to special algorithms and primes like Generalized Mersenne
primes (e. g. for NIST curves). This approach has at least two drawbacks. Firstly,
implementations are often restricted to specific primes, i. e., they cannot handle other
curves, especially curves with pseudo-random prime structure as e. g. Brainpool curves.
Secondly, randomization countermeasures against SCA do not work at all or at least
not as expected (e. g. larger blinding factors required compared to random primes, see
[SW14]).

In addition to the verifiable generation process of curve parameters, there are some
other criteria for generating secure and useful curves. Often the algorithms used for
explanation are given in affine coordinates. However, in practice affine coordinates are
rarely used for efficient and secure implementations. Even if the curve is defined in
short Weierstrass form using affine coordinates, the internal computation uses projective
coordinates as (X , Y , Z) and (X , Z) [LMSS15].

We assume that the curves used are ‘Brainpool-like’, i. e., they have the properties
given in [Loc05]. Specifically, we assume:

• Curves are given in short Weierstrass form

y 2 = x 3 + ax + b mod p,

• Verifiably pseudo-random prime p,

• cofactor h = 1 can be assumed,

• b is a non-square mod p, and

• p ≡ 3 mod 4 such that square root is easy to compute (point decompression).

20 2 Elliptic Curve Cryptography

The following Brainpool conditions may be fulfilled, but are not guaranteed

• bit length of n = #E(Fp) < bit length of p [Loc05],

• a ≡ −3 mod p (would allow some performance improvements), and

• twist security.

We are interested in ECC bit lengths of 256 bit, 384 bit, 512 bit, and 521 bit.
Although these requirements seem to be very restrictive, it should be noted that they

are common within the high-assurance community, see e. g. [FPRE15], and that the word
generic is justified by the possibility to compute on general short Weierstrass curves with
pseudo-random prime p.

2.6 Selected Side-Channel Analysis Countermeasures

A possible Side-Channel Analysis (SCA) is to analyze the power trace of a crypto-
graphic component. Almost all unprotected implementations for ECC are vulnerable
against power analysis. A distinction is made between Simple Power Analysis (SPA)
and Differential Power Analysis (DPA). A simple method to avoid SPA is to use a Mont-
gomery Ladder for scalar multiplication. Coron introduced countermeasures against
DPA [Cor99]. We describe the important countermeasures in the following subsections.

2.6.1 Timing Analysis

Timing Analysis was one of the first Side-Channel Analysis discovered, see [Koc96]. It
exploits run time variations which depend on secret data. Therefore, one of the first
countermeasures is to make the run time of an algorithm constant or more special,
independent from secret keys. In hardware, this seems relatively easy. Another counter-
measure against timing analysis is to add entropy, i. e., to randomize the data, so that
the run time varies from invocation to invocation.

Schindler [Sch00] published an attack against RSA with CRT which uses Mont-
gomery multiplication. It exploited the fact of varying run time in Montgomery multi-
plication due to the final reduction, see Section 4.2. This theoretical attack was imple-
mented by Brumley and Boneh [BB03].

For us, this means usage of the improved Montgomery multiplication (Walter’s trick),
see Algorithm 4.2.3, usage of a uniform Ladder, see next Section, implementation of time
constant formulas and, of course, randomization.

2.6.2 Montgomery Ladder

An SPA allows an attacker to easily extract the private key by inspecting a power trace
of a device as shown in Figure 2.3. Usually, the scalar multiplication routine must differ
between 1 and 0 of the scalar k for computation of kP . Exactly these variations make
the characteristics in a power trace as shown in Figure 2.3. For example, a Montgomery

2.6 Selected Side-Channel Analysis Countermeasures 21

Figure 2.3: SPA attack against the RSA algorithm [Paa13].

Ladder can be used to hide these variations [Wal99]. In a Montgomery ladder every step
is similar, no matter if the scalar bit is 0 or 1 (see Section 2.3.3).

2.6.3 Scalar Blinding

Coron suggests in [Cor99] to randomize the scalar in the point multiplication process.
The computation of Q = dP works as follows:

1. Select blinding factor k ∈R N (in practice k should be at least 20 bit of [Cor99], or
32 to 64 bit (current implementations))

2. Compute d′ = d + k · n, where n is the order of the group 〈G〉 >

3. Q = d′P

It is important to change the blinding factor at each new execution of the algorithm.

2.6.4 Randomized Projective Coordinates

One further countermeasures suggested by Coron [Cor99] is the application of random
projective coordinates. Computation with projective coordinates can be faster and more
efficient compared to affine coordinates. Furthermore, the representation can be used
for randomization of the original coordinates. Recall, that the projective point (X , Y , Z)
of an affine point P = (x , y) is given by P = (x , y) = (X/Z, Y /Z). But the projective
representation is not unique because

(X , Y , Z) = (λX , λY , λZ) (2.15)

22 2 Elliptic Curve Cryptography

for λ 6= 0.
So for random λ 6= {0, 1} the projective coordinate of P is a randomization of the affine

representation. If required, it is also possible to randomize after every point addition
and doubling with a new λ.

2.6.5 Prime Randomization

For some high security requirements it may be necessary to hide the public domain
parameters in particular the prime p. A mechanism to achieve such secrecy, which may
also be useful for SCA protection, is the randomization of the prime of the base field.

In some smart card coprocessors, e. g. the Crypto2000 coprocessor from Infineon, the
modulus has to be transformed to a special structure before any modular operation can
be performed.1 Here, it is natural to randomize the modulus in this step as well [Sch15].

A normal modular multiplication of two numbers works like

Z := M · C mod N. (2.16)

For modulus randomization a random µ ∈R N (in practice 32 bit) is selectable and
multiplied by N so that

N ′ := N · µ. (2.17)

In practice, the factor µ consists of another non-random factor to transform the modulus
N to the desired form N ′. The intention is now to compute in larger rings and the
original group is hidden for potential attackers. To calculate Z the following two steps
are necessary:

Z ′ := M · C mod N ′ (2.18)

Z := Z ′ mod N (2.19)

This countermeasure prevents attacks to infer information on the prime p, e. g. DPA.

1The transformed modulus has to start with 011000 . . . 0xx with at least eight zeros following 011.

3 Technical Background

This chapter explains the basics of dedicated reconfigurable hardware used in cryptogra-
phy. In addition, the given Xilinx 7-Series Kintex XC7K325T FPGA will be considered
in detail along with some general information about this family of FPGAs. Because
using only general logic resources would be very expensive it makes sense to use spe-
cialized units of the FPGA. We present Configurable Logic Blocks (CLBs), DSPs, and
Block-RAM (BRAM) in this chapter.

3.1 Motivation and Basics of FPGAs

Cryptographic procedures are time-consuming, because of their intensive computing.
Therefore, cryptography is often implemented in dedicated cryptographic hardware.
This specialized hardware is developed for high speed applications, in order to avoid
cryptography being the bottleneck. Since this hardware does not access to external com-
ponents directly, most attacks are prevented, aside from very costly and labor-intensive
attacks with physical access to these hardware units like microprobing, focused ion beam,
or laser cutter.

There are several types for integrated hardware circuits like full-custom static designs
or designs on Application Specific Integrated Circuits (ASICs). In this work we focus on
Field-Programmable Gate Arrays (FPGAs). Earlier FPGAs consisted of simple multi-
plexer circuits which were connected to simple logic elements. Modern FPGAs provide
many CLBs consisting of slices with Look-Up Tables (LUTs) and Flip-Flops (FFs).

The available hardware is a Xilinx 7-Series Kintex XC7K325T FPGA. This type of
FPGA provides 50 950 slices. In addition to slices, FPGAs provide further components
for special tasks. Examples for these components are Block-RAM (BRAM), DSP, and
Gigabit Transceiver (GTP). The first two components are described in the following
subsections. GTPs handle big amount of data with special high speed interfaces like
Gigabit Ethernet and PCI Express. These are not required in this work [Xil14c].

3.2 Configurable Logic Blocks and Slices

Configurable Logic Blocks (CLBs) are the most important hardware resources of an
FPGA. The sub-elements of CLBs are called slices. These slices provides the main
logic resources on the FPGA for the implementation of combinatorial circuits. Slices in
the same CLB are connected by local routing, for general routing to the connection of
other resources a switch matrix provides this access. In the available hardware of Xilinx

24 3 Technical Background

7-Series, there are 25 475 CLBs, with two slices per CLB. All information in this section
is from [Xil14b].

A slice can be selected and routed independently the other slice in the CLB. Therefore,
in practice, resource consumption is given in number of slices. Modern slices provide
Look-Up Tables (LUTs), Flip-Flops (FFs), and carry logic. These elements enable ad-
vanced capabilities like distributed RAM, shift registers, or multiplexers. In FPGAs of
the 7-Series of Xilinx each slice includes, inter alia, 4 6-input LUTs and 8 FFs.

Xilinx 7-Series provides two types of slices, SLICEM and SLICEL. The only difference
is that SLICEM supports distributed memory, while SLICEL does not. Figure 3.1 shows
a simplified diagram of a SLICEL with the elements LUT, carry logic (CL), and Flip-Flop
(FF).

LUT CL

FF

FFDIN

DXIN

CARRYOUT

DMUXOUT

DQOUT

DOUT

CIN

CXIN

CMUXOUT

CQOUT

COUT

BIN

BXIN

BMUXOUT

BQOUT

BOUT

AIN

AXIN

AMUXOUT

AQOUT

AOUT

CARRYIN

LUT CL

FF

FF

LUT CL

FF

FF

LUT CL

FF

FF

Figure 3.1: Simplified diagram of a SLICEL in XILINX 7-Series.

3.3 Digital Signal Processing Blocks 25

3.3 Digital Signal Processing Blocks

An essential task of FPGAs is digital signal processing. Especially for this application
area, separated processing units are included. As mentioned in Chapter 1, one goal of
this work is to use these DSPs efficiently. All information in this section is taken from
[Xil14a].

In 7-Series FPGAs of Xilinx DSPs are called DSP48E1. These slices are used for
efficient processing of digital signals. Many custom and fully parallel algorithms use
binary multipliers and accumulators. To speed up these applications and to safe normal
CLB slices DSPs should be used. Furthermore, DSPs consume less power compared to
the same computation using CLBs. The XC7K325T offers 840 DSPs.

The basic construction of a single DSP48E1 slice is shown in Figure 3.2. Four input
ports of different widths, A with 30 bit, B with 18 bit, C with 48 bit, and D with 25 bit
are provided. Fundamental parts are the Arithmetic Logic Unit (ALU), the 25×18
multiplier and the Pre-adder. The ALU can be used as two-input simple logic unit and
as three-input adder or subtractor. The three-input adder provides the four following
operations which can be selected via ALUMODE.

• Z + X + Y + CIN

• Z − (X + Y + CIN)

• not(Z) + X + Y + CIN = −Z + (X + Y + CIN)− 1

• not(Z + X + Y + CIN) = −Z −X − Y −CIN − 1

The three variables X, Y , and Z correspond to the three multiplexers in the figure which
are controlled via OPMODE port. The fourth input is CIN and stands for carry. Besides
the regular inputs it is also possible to select the previous result P in both multiplexers
X and Z.

The multiplier receives two signals, 25 bit and 18 bit wide, as input and outputs two
partial products with 43 bit width. Both partial products must be added with the ALU
for final 48 bit product. Please note that the MSB of both inputs are only useable for
signed numbers in Two’s complement representation. Therefore, only 24×17 bit are
usable for unsigned numbers.

The block Dual A, D, and Pre-adder contains an adder which adds A and D before
the multiplication. However, only the lowest 25 bit can be used for multiplication. If no
Pre-addition and multiplication are needed, both inputs A and B can be cascaded to a
48 bit wide value and selected in X.

Different pipeline stages exist which can be switched on optionally during the imple-
mentation phase. Important registers pictured in Figure 3.2 are the final result P , the
intermediate result after multiplication M , and the input value C. There are some addi-
tional registers in the blocks Dual A, D, and Pre-adder and Dual B Register where the
data paths of A and B can have up to two pipeline stages. D has one pipeline stage and
one additional after the Pre-adder.

26 3 Technical Background

For short and fast wiring of two DSPs there are special input and output ports marked
with a asterisk. They can be connected to adjacent DSP slices and provide an output
cascade stream between adjacent DSP slices, e. g., in multi-precision multiplication.

*These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

X

17-Bit Shift

17-Bit Shift

0

Y

Z

1

0

0

48

48

4

48

BCIN* ACIN*

OPMODE

PCIN*

MULTSIGNIN*

PCOUT*

CARRYCASCOUT*

MULTSIGNOUT*

CREG/C Bypass/Mask

CARRYCASCIN*

CARRYIN

CARRYINSEL

A:B

ALUMODE

B

B

A

C

M

P

P
P

C

MULT
25 X 18

A

18

30

3

PATTERNDETECT

PATTERNBDETECT

CARRYOUT

4

7

48

48

30

18

P

P

5

D 25

25

INMODE

BCOUT* ACOUT*

18

30

4 1

3018

Dual B Register

Dual A, D,

and Pre-adder

Figure 3.2: Schematic of 7-Series DSP48E1 Slice [Xil14a].

Summarizing, this results in the following fundamental and relevant operations:

• P = C ± (B · (D ±A(24 downto 0)) + CARRYIN)

• P = Pold ± (B · (D ±A(24 downto 0)) + CARRYIN)

• P = C ± (A||B)

• P = C ± Pold

• P = Pold ± (A||B)

3.4 Dedicated Block-RAM

Some applications need to store large amount of data. Therefore, Xilinx implemented
dedicated BRAM blocks. These BRAM blocks are denoted by RAMB36E1. All infor-
mation in this section is taken from [Xil14d].

The available XC7K325T provides 445 each a 36 kbit RAMB36E1. Figure 3.3 gives
a schematic overview of a single RAMB36E1 slice. A RAMB36E1 can be used in syn-
chronous True-Dual-Port and Single-Port mode and additionally in asynchronous True-
Dual-Port mode. The latter means that that both ports, Port A and Port B can access
to the Memory Array independently, also from different clock domains. This makes

3.4 Dedicated Block-RAM 27

it necessary to handle conflict situations in which both ports access the same memory
location. The data width can be adjusted, so that each word can be consists of 36 bit,
32 bit data bits and a 4 bit parity. Thus, up to 1 024 words each 36 bit width can be
stored in one RAMB36E1.

DOPA

DIPA

ADDRA

WEA

ENA

CASCADEOUTB

RSTRAMA

CLKA

RSTREGA

REGCEA

REGCEB

DIPB

ADDRB

WEB

ENB

RSTRAMB

RSTREGB

CLKB

36-Kbit Block RAM

DOPB

DOB

DOA

DIA

DIB

36 Kb

Memory

Array

Port A

32

4

32

4

16

4

32

4

16

4

32

4

Port B

CASCADEOUTA

CASCADEINBCASCADEINA

Figure 3.3: Schematic of 7-Series RAMB36E1 Slice [Xil14d].

In the 7-Series of Xilinx FPGAs, some dedicated logic enables to use these BRAM
blocks as First-In-First-Out (FIFO), also in dual-clock asynchronous mode. This dedi-
cated logic provides counter, comparator, or status flags for full or empty indication.

4 Elliptic Curve Arithmetics in Hardware

Scalar multiplication is crucial for ECC. We introduced this operation in Section 2.3. In
this work, reduced projective coordinate representation are used along with the Mont-
gomery ladder presented by Brier and Joye [BJ02]. We show how the computation
can be implemented in a secure and efficient way on reconfigurable hardware.

Point addition and point doubling are based on finite field arithmetic, in particular
modular multiplication, modular addition, and modular subtraction. Efficient imple-
mentation techniques for these operations are described in this chapter as well.

4.1 Efficient Scalar Multiplication using a Parallel Montgomery
Ladder

Section 2.2.3 describes an efficient procedure for point addition and doubling using only
X and Z coordinates. Since in every step of the Montgomery ladder both, point addition
and doubling, have to be performed, these operations can efficiently computed by using
a Montgomery ladder for scalar multiplication as proposed by Brier and Joye [BJ02].
Fischer et al. describe this idea for efficient and secure scalar multiplication especially
for reduced projective coordinates in [FGKS02]. One step of the Montgomery ladder con-
sists of 19 multiplications, 10 additions, and 4 subtractions. If two arithmetic units are
available, a parallel version of this Montgomery ladder can be performed. Parallelizing
the algorithm reduces the time complexity to 10 multiplication and 8 addition/subtrac-
tion steps.

The approach of Fischer et al. is shown in Algorithm 4.1.1. It shows the parallel
computation of P ′ = P + Q and Q′ = 2Q like introduced in equations (2.10) and (2.11).
For the computation eight registers are required in addition to three registers holding
the domain parameters a and b and the affine difference x D, the x -coordinate of point
D = P −Q.

Algorithm 4.1.1 constitutes one step of the parallel Montgomery ladder, called PML-
OS. The full Montgomery ladder is shown in Algorithm 4.1.2 (see also Algorithm 2.3.3).
At the end of the algorithm in line 7, the projective coordinates of dP and (d+ 1)P are
used to obtain the affine coordinates of dP (see equations (2.12) and (2.14)).

Four essential standard arithmetic operations are required: modular multiplication,
modular addition, modular subtraction, and inversion for transformation to affine coor-
dinates. Therefore, these operations must be implemented by the coprocessor.

30 4 Elliptic Curve Arithmetics in Hardware

Algorithm 4.1.1: Parallel Montgomery Ladder — One Step [FGKS02]

Input: X P , ZP , X Q, ZQ

Output: X P ′ , ZP ′ , X Q′ , ZQ′

R0← X P , R1← ZP , R2← X Q, R3← ZQ

(1) R6← R2 ·R1 (2) R7← R3 ·R0
(3) R4← R7 + R6 (4) R5← R7−R6
(5) R5← R5 ·R5 (6) R7← R1 ·R3
(7) R1← a · R7 (8) R6← R7 ·R7
(9) R0← R0 ·R2 (10) R6← b ·R6

(11) R0← R0 + R1 (12) R6← R6 + R6
(13) R0← R0 ·R4 (14) R1← x D · R5
(15) R4← R0 + R6
(16) R4← R4 + R4 (17) R6← R2 + R2
(18) R4← R4−R1 (19) R7← R3 + R3
(20) R0← R6 ·R7 (21) R1← R3 ·R3
(22) R2← R2 ·R2 (23) R3← a ·R1
(24) R6← R2−R3 (25) R7← R2 + R3
(26) R1← R1 + R1
(27) R2← b · R1 (28) R7← R7 ·R0
(29) R1← R2 ·R1 (30) R0← R0 ·R2
(31) R6← R6 ·R6
(32) R6← R6−R0 (33) R7← R7 + R1

R4← X P ′ , R5← ZP ′ , R6← X Q′ , R7← ZQ′

Algorithm 4.1.2: Parallel Montgomery Ladder

Input: elliptic curve E together with an elliptic curve point P = (X P , ZP) and a
scalar d =

∑n−1
i=0 di2i with di ∈ {0, 1} and dn−1 = 1, x D

Output: dP
1 Q← O

2 for i = n− 1 downto 0 do
3 if di = 1 then
4 Q, P ← PML-OS(P, Q)
5 else
6 P, Q← PML-OS(P, Q)

7 P = (x dP , y dP)← ProjectiveToAffine(P, Q)
8 return (x dP , y dP)

4.2 Modular Multiplication – Montgomery Multiplication 31

4.2 Modular Multiplication – Montgomery Multiplication

Recall, scalar multiplication based on point addition and doubling and it require com-
putations in finite field arithmetic like modular multiplication, i. e., Z = X · Y mod M
with 0 ≤ X, Y < M and M > 0 (M is assumed to be odd for our applications). If the
intermediate product Z ′ = X · Y is computed first afterwards reduced by the modulus
M , then the intermediate result Z ′ has double register length compared to its operands.
So an interleaving step might be appropriate.

The naive computation of modular reduction Z = Z ′ mod M , the iteratively subtract-
ing the divisor M until the result is less than M , is very expensive.

We choose the Montgomery Multiplication for fast and efficient modular multiplication
in hardware.

Montgomery [Mon85] introduced an efficient method in software and hardware for
modular multiplication without trial division. With the Montgomery multiplication the
dividend is always a multiple of the divisor. This procedure, the Montgomery Reduction
MRed(Z ′), is shown in Algorithm 4.2.1.

Let R > M with gcd(R, M) = 1. The Montgomery Reduction computes Z·R−1 mod M
for an input 0 ≤ Z ′ < M ·R. The inputs to the algorithm are the product of two integers
Z ′, the modulus M , a pre-computed constant M ′ := −M−1 mod R, and the radix R.
MRed(Z ′) uses the radix R for easy division in line 2 only by shifting the complete safe
word. Therefore it is helpful to choose R as a power of the base, usually two for binary
systems.

Algorithm 4.2.1: Basic Montgomery Reduction MRed(Z ′)

Input: Z ′, R, M , and M ′

Output: Z · R−1 mod M
1 U = Z ′ ·M ′ mod R

2 Z = Z′+U ·M ′

R
3 if Z ≥M then
4 return Z −M

5 else
6 return Z

Of course, the output of the basic Montgomery reduction includes R−1 which is not
needed. It is recommended to convert both multipliers before multiplication. This results
in the following operation chain for a modular multiplication X · Y mod M :

1. MRed(X ·R2) = XR = X̃

2. MRed(Y ·R2) = Y R = Ỹ

3. MRed(X̃ · Ỹ) = XY R = X̃Y

4. MRed(X̃Y · 1) = XY

32 4 Elliptic Curve Arithmetics in Hardware

The forward and reverse transformation are only necessary once. At the start we trans-
form it and at the end we reverse it back to the new output value. It should be noted
that X̃ = X · R mod M can be seen as a M -residue of 0 ≤ X < M , i. e., as a unique
representative of X.

The usage of MRed(Z ′) is not the most efficient way to multiply two numbers. MRed(Z ′)
simplifies the reduction but not the multiplication itself. Algorithm 4.2.2 combines inte-
ger multiplication and Montgomery reduction in a single function. Single words of the
second multiplicand Y with length b will be processed iteratively in line 2. It follows
that the division in line 4 is a right shift by b bits. At the end of the algorithm, if Z ≥M ,
it is necessary to subtract M once and return the result Z.

Algorithm 4.2.2: Word-Level Montgomery Product [Men07]

Input: M = (Mn−1, . . . , M0)2b , X = (Xn−1, . . . , X0)2b , Y = (Yn−1, . . . , Y0)2b , with
0 ≤ X, Y < M , R = 2n·b, gcd(M, 2b) = 1, and M ′ = −M−1 mod 2b

Output: (X · Y · R−1) mod M
1 Z = (Zn, . . . , Z0)2b ← 0
2 for i = 0 to n− 1 do
3 Ui ← ((Z0 + X0 · Yi) ·M ′) mod 2b

4 Z ← (Z + X · Yi + M · Ui)/2b

5 if Z ≥M then
6 Z ← Z −M

7 return Z

Algorithm 4.2.2 is an efficient way for modular multiplication. However, the condi-
tional statement in line 6 takes additional time and, furthermore, makes the algorithm
vulnerable to SCA, especially TA. Therefore it is useful to modify this algorithm as first
proposed by Walter in [Wal99]. The modified algorithm is shown in Algorithm 4.2.3.
Instead of the conditional subtraction, the loop will pass one more time, thus saving this
conditional step. The consequence is one more word Yn which can filled with zeros and
one more loop is required. But eliminating the conditional step reduces complexity and
increases the robustness against SCA. The additional loop is negligible.

Summarized, there are no additional steps needed for transformation to Montgomery
form, only R2 mod M is required. The transformation has to be done only at the begin
and at the end of the computation. The improved version of Montgomery multiplication
is secured against timing attacks. In contrast to normal modular multiplication addi-
tional registers are needed to store M ′, Yn, and Zn each with a length of b bit. The
Improved Montgomery Multiplication Algorithm 4.2.3 has been chosen as one of the
algorithms to be implemented for this work.

4.3 Modular Adder and Subtractor 33

Algorithm 4.2.3: Improved Montgomery Product MontMul(X, Y, M)
[Men07]

Input: M = (Mn−1, . . . , M0)2b , X = (Xn−1, . . . , X0)2b , Y = (Yn, . . . , Y0)2b , with
0 ≤ X, Y < 2 ·M , R = 2(n+1)·b, gcd(M, 2b) = 1, and M ′ = −M−1 mod 2b

Output: (X · Y · R−1) mod M
1 Z = (Zn, . . . , Z0)2b ← 0
2 for i = 0 to n do
3 Ui ← ((Z0 + X0 · Yi) ·M ′) mod 2b

4 Z ← (Z + X · Yi + M · Ui)/2b

5 return Z

4.3 Modular Adder and Subtractor

Our ECC arithmetic requires modular addition and subtraction. Let 0 ≤ X, Y < M
and consider the operations

Z ′ = X + Y, Z = Z ′ mod M,

Z ′ = X − Y, Z = Z ′ mod M.

Algorithm4.3.1 shows the implemented routine for modular addition. It holds, the inter-
mediate result Z ′ is in maximum 2M − 2. Therefore, only one conditional subtraction
with M is required for final result Z ∈ [0, . . . , M − 1]. If X = 0 and Y = M − 1 the
difference Z ′ is in minimum −(M − 1). This negative result requires a addition with M
to be positive.

Algorithm 4.3.1: Modular Addition ModAdd(X, Y, M)

Input: X, Y , M , with 0 ≤ X, Y < M
Output: Z

1 Z ← X + Y
2 if Z ≥M then
3 return Z −M

4 else
5 return Z

For modular subtraction, Algorithm 4.3.2 shows a similar routine. In worst case,
X = 0 and Y = M − 1 which results Z = M − 1. The conditional addition with M
avoid the return of a negative number.

34 4 Elliptic Curve Arithmetics in Hardware

Algorithm 4.3.2: Modular Subtraction ModSub(X, Y, M)

Input: X, Y , M , with 0 ≤ X, Y < M
Output: Z

1 Z ← X − Y
2 if Z < 0 then
3 return Z + M

4 else
5 return Z

4.4 Inversion

The transformation from projective to affine coordinates requires at least two inversions,
one for x and one for y . In Fp the multiplicative inverse can be computed by the
Extended Euclidean Algorithm (EEA) or by Fermat’s Little Theorem. If no further
hardware should be used, then Fermat’s Little Theorem is favored. Another point in
favor of Fermat is possible leakage of side-channel information by the EEA.

Let M = p, p > 3, prime and 1 < X < M . It holds

X−1 ≡ XM−2 mod M. (4.1)

Due to the one-to-one correspondence to rings for Montgomery multiplication it holds

X−1R ≡ XM−2R mod M (4.2)

where R is defined as introduced in Section 4.2.
The straightforward way to implement the exponentiation in Fermat’s Little Theorem

is square-and-multiply algorithm. It is advised to avoid using square-and-multiply algo-
rithm to avoid SCA vulnerabilities. In our case M = p is a public domain parameter
and so it is not necessary to avoid it. Algorithm 4.4.1 shows the square-and-multiply
algorithm for Fermat’s little theorem.

Algorithm 4.4.1: Inversion in Fp — Fermat’s little theorem

Input: XR, M = (Mn−1, . . . , M0)2b , with X < M
Output: Z = X−1R mod M

1 Z ← 1
2 for i = n− 1 downto 0 do
3 Z ← Z · Z mod M
4 if Mi = 1 then
5 Z ← Z ·XR mod M

6 return Z

4.5 Efficient Multiplier in FPGA using DSPs 35

4.5 Efficient Multiplier in FPGA using DSPs

In the previous sections, general algorithms for required operations have been presented
and explained. Modular addition and modular subtraction are easy to implement in
hardware. However, the efficient implementation of Montgomery Multiplication is the
most difficult problem in this work. Mentens [Men07] already meets all requirements
and so it is the most important reference for this work.

Mentens uses Montgomery multiplication for efficient reduction and therefore she in-
vestigates some existing hardware designs of [KAK96], mainly Separated Operand Scan-
ning (SOS) and Coarsely Integrated Operand Scanning (CIOS). Due to the improved
results reported CIOS are preferred for multiplication [KAK96].

CIOS is a modification of SOS by integrating the reduction step into the multiplication
loop. So for reduction, only the length of one word will be shifted instead of the complete
length of M . This is possible by changing the position of the loops in both algorithms
SOS and CIOS. Figure 4.1 shows how CIOS works. In the following T takes the
role of Z in Algorithm 4.2.2 and 4.2.3. In every iteration i it is necessary to compute
Ui = (T0 + X0 · Yi) · M ′, the important part of Montgomery Multiplication for easy
division by shifting only. The normal multiplication happens by multiplying X step by
step with one word of Y . The complete product T , after every iteration, is the sum of
both products XYi and MUi. Last step of iteration is shifting by one word. After all
iterations are done, T is the final result of MontMul(X, Y, M).

X

M

Y

X*Y0

M*U0

Y

X

M

X0

Y0

U0

Y1

X0

U1

0

T

X*Y1

M*U10

T

T

T

T

T0

iteration 0 iteration 1

M' M'

Figure 4.1: Schematic execution of parallelized CIOS algorithm by Mentens [Men07, Figure 3.2].

For better understanding of this schematic presentation, Algorithm 4.5.1 gives a
pseudo code of CIOS, see [Men07, Algorithm 8]. Note, that in [Men07, Algorithm 8]
only the basic Montgomery multiplication is shown, not the improved Montgomery mul-
tiplier by Walter [Wal99]. In this case, carry-safe representation is used which requires
the final step FINALADD(C, S). The outer loop is equivalent to the single iterations
in Figure 4.1. The first and second inner loop compute the multiplication Xj · Yi and
Mj · U for each word. The third inner loop is equivalent to a right shift by one word of
S.

36 4 Elliptic Curve Arithmetics in Hardware

Algorithm 4.5.1: Variation of Coarsely Integrated Operand Scanning
(CIOS) method for Montgomery Multiplication with integration of
Improved Montgomery Multiplication and Carry-Safe Addition by
Mentens [KAK96].

Input: M = (Mn−1, . . . , M0)2b , X = (Xn, . . . , X0)2b , Y = (Yn, . . . , Y0)2b , with
0 ≤ X, Y < 2 ·M , R = 2(n+1)·b, gcd(M, 2b) = 1, and M ′ = −M−1 mod 2b

Output: (X · Y · R−1) mod M
1 S = (Sn+1, . . . , S0)2b ← 0
2 C = (Cn, . . . , C0)2b ← 0
3 for i = 0 to n do
4 for j = 0 to n do
5 (Cj , Sj)← Xj · Yi + Sj + Cj

6 U ← ((S0 + C0) ·M ′) mod 2b

7 (C0, S0)← U ·M0 + S0

8 for j = 1 to n− 1 do
9 (Cj , Sj)← U ·Mj + Sj + Cj−1

10 (Cn, Sn)← Sn + Cn−1

11 Sn+1 ← Cn

12 for j = 0 to n do
13 Sj ← Sj+1

14 Sn+1 ← 0

15 T ← FINALADD(C, S)
16 return T

4.5 Efficient Multiplier in FPGA using DSPs 37

Based on this algorithm, Mentens created a hardware architecture as shown in Fig-
ure 4.2, see [Men07, Figure 3.10]. Most important parts are the four blocks I ′, II ′, III ′,
and IV ′, whereby I ′ and III ′ are similar. These two blocks consists of (n + 1) respec-
tively n b× b multipliers. The output in carry-safe representation always is represented
by double lines. Block I ′ is equivalent to the multiplication Xj · Yi in line 5 and Block
III ′ to the multiplication U ·Mj in line 9 of Algorithm 4.5.1. In block II ′, U is calcu-
lated and can be mapped to line 6. Until now, all additions in first and second inner
loops were neglected. Mentens separated all additions and combines them into block
IV ′. It is specially designed 6-2 carry-safe adder with 6 inputs and 2 outputs. Also the
reduction step in line 13 is included in this box, but in hardware only wiring is required
for shifting. Outputs are one carry and one safe which must be added as shown in line 15.
This final addition is not shown.

III
,

iY

Y MX M

I
,

,

,

IV

T0T

b

b

b

b LSB

b LSB

II
b LSB

,

Ui

(n+1)*b n*b

n*b

(n+1)*b (n+1)*b

n*b

(n+1)*b

(n+1)*b

Figure 4.2: Architecture of CIOS multiplier by Mentens [Men07, Figure 3.10].

Mentens implemented this algorithm on a Xilinx Virtex XC2VP30-7FF1152 FPGA
of the 2-Series and used its DSPs to implement the multipliers. This series of Xilinx
includes 18×18 multipliers in the DSPs, but the two MSB bits are reserved for overflow
and unsigned representation. Therefore the DSPs are used as 16×16 multipliers. The
special 6-2 carry-safe adder is implemented in normal logic because only simple opera-
tions are required. Mentens implemented this multiplier without any pipeline stages
inside the DSPs which led to a low clock rate relatively.

5 Design and Implementation of the
Coprocessor

This chapter covers the design and the implementation of the coprocessor. We summarize
all requirements and aims of the final design. After that the designed coprocessor and
its units are presented like data memory, instruction buffer, and Arithmetic Unit (AU).
The design is presented in a top down approach. The coprocessor core is the AU with its
Montgomery Multiplier. This CIOS Multiplier is described more precisely. Furthermore,
several variations of the CIOS Multiplier were designed and implemented which each are
described as well.

5.1 Design Requirements

The main task of the coprocessor is the fast execution of Montgomery multiplication
and also modular addition and subtraction. But an environment is required to use
these calculation units. The coprocessor will be connected in subsequent works to a soft
microprocessor core which controls the ECC operations. Several requirements are given
for the coprocessor design.

The coprocessor must provide an asynchronous mode. This means that the inner
part of the coprocessor runs with a frequency different from the part outside of the
coprocessor. The internal part is called internal clock domain and the part outside is
called external clock domain. Therefore, all connections must provide the frequency of
the external clock domain, independently of the internal clock domain frequency.

Storage for data is required. The data storage must be connected internal for provide
data and storage for the AUs and external for data exchange to the microprocessor.
Another storage is required for control data. It must store the control data in a queue
and provide them by and by to the internal control unit. Asynchronous mode for the
connection from the external clock domain of both storage units is mandatory.

It is recommended to use the parallelized Montgomery ladder shown in Algorithm
4.1.1. Therefore, two independent AUs are required.

5.2 Coprocessor

This section explains the overall design of the coprocessor. The particular elements are
described in the following sections.

Besides the fact that the coprocessor includes arithmetic elements, three issues must
be solved:

40 5 Design and Implementation of the Coprocessor

1. How can the data be exchanged between microprocessor and coprocessor?

2. How can the coprocessor be controlled?

3. How is the problem of different clock domains of microprocessor and coprocessor
to solve?

All these issues can be solved by using BRAM. It stores the data and can be connected
via two autonomous port, each in different clock domains. The idea for controlling the
coprocessor is the use of opcodes. The opcodes will be written into a FIFO and it
handle the queue procedure. Because of FIFO support of the BRAM with asynchronous
True-Dual-Port mode it can be used for the opcodes as well.

The coprocessor is designed for flexible bit lengths up to 1 024 bit for M . The generic
parameter for bit length must be set before synthesis. The coprocessor is split into two
clock domains shown in Figure 5.1 (dotted line). Three elements communicate with the
soft microprocessor core, the BRAM, the FIFO, and the Error Reg.

With the BRAM, the processor can read and write directly into the memory that are
used internally. The coprocessor provides a data bus of 32 bit for data-in and data-out.
Single registers and their 32 bit words can be addressed via the bram_addra port. The
BRAM contains 16 registers with fix size of 1 024 bit but only the lowest bits, which are
set with the generic parameter, are used. Thus 9 bit are required to address all single
32 bit words. More details for the BRAM follow in Section 5.3.

The processor controls the coprocessor through a FIFO. Opcodes of 32 bit will be
written into the FIFO which are processed internally. The signal fifo_ready signals the
processor if the coprocessor is idle.

It must be possible to check the coprocessor for errors, for example invalid opcodes,
so error_status indicates if any errors happened.

Internally there are three main blocks, both AUs and the Finite State Machine (FSM).
The internal data path between AUs and BRAM is 256 bit wide. To reduce data path
delays a register between AUs and BRAM is introduced. The output of the AU is size
of M . Both outputs are defined as two further results Z1 and Z2. Direct loading Z1
and Z2 into an AU allows the use of the full data width to reduce clock cycles. To store
an output of one AU a multiplexer splits this output to words of 256 bit. All internal
elements are controlled by the FSM, which executes the opcodes obtained by the FIFO.
It controls them with its control lines, which are represented as gray lines.

5.3 Data Memory

The data memory is the central point for exchange of data between coprocessor and
microprocessor. Firstly, the required memory must be evaluated.

The parallel Montgomery ladder as shown in Algorithm 4.1.1 is one requirement of the
design. The algorithm requires eight longwords plus further three longwords for values
a, b, and x D. The modulus M is required for modulo operation. For Montgomery multi-
plications R2 and M ′ are required as well. Two further registers with fixed values 0 and

5.3 Data Memory 41

Data Memory

AU1 AU2

fifo_din

fifo_wea fifo_ready error_status

bram_addra

bram_wea

bram_douta

bram_dina

Error

Reg

932 32

32

32

|M| |M|

256 256

FSM

Instruction

FIFO

Figure 5.1: Architecture of designed coprocessor.

1 for special cases are desired. In sum 16 longwords1 are required for a straightforward
non-optimized implementation of this design. Note, in the following the storage of one
longword is called register. These 16 registers are labeled with R0 to R15.

A RAMB36E1 has a data width of 32 bit, normally 36 bit but 4 bit are only for parity.
The internal data width of the coprocessor is 256 bit, therefore, for fast access to one
complete 256 bit word it is necessary to use more than one BRAM at the same time. In
this case eight blocks are required.

All registers2 are stored in these eight BRAM. In maximum configuration of bit length
of M one register requires 1 024 bit. Eight RAM36E1 slices with each 36 kbit are clearly
overdone for the in maximum required 16 kbit. It is defined, that in every bit length
configuration one register has fixed size of 1 024 bit, and only the lower significant bits
are used for smaller M .

Figure 5.2 shows a schematic design of the complete BRAM element. For simplified
representation all signals are connected to the single RAMB36E1 slices via the data
bus shown. Both interfaces of inner and outer domain are almost identical with one
exception. The internal data width is 256 bit. Therefore, 16 registers with each 4 words
must be addressed, so 6 bit are required for addressing. In the external domain only

1Normally, 17 longwords are required if also y
P

should be calculated as shown in equation (2.14). This
fact was overlooked in final implementation. However, it can compensated by the fact, that both
registers of M and M ′ are unused after they loaded into MREG and M’REG of both AUs.

2R0 = 0 and R1 = 1 are special fictive registers which are loaded directly by simple logic into the input
registers of the AUs for saving clock cycles. We ignore this fact for easier description of the design.

42 5 Design and Implementation of the Coprocessor

32 bit can be read and written, thus 9 bit are required here for addressing. The three
further bits control both multiplexers.

R
A
M
B
3
6
E
1

bram_wea bram_addrabram_dina bram_douta

enb web addrb dinbdoutb

R
A
M
B
3
6
E
1

R
A
M
B
3
6
E
1

R
A
M
B
3
6
E
1

R
A
M
B
3
6
E
1

R
A
M
B
3
6
E
1

R
A
M
B
3
6
E
1

R
A
M
B
3
6
E
1

9 3232

256 2566

Figure 5.2: Architecture of BRAM consists of eight parallel RAMB36E1 slices.

5.4 Coprocessor Control

The coprocessor is instructed by opcodes which are written into the instruction FIFO and
interpreted by the Finite State Machine (FSM). In case of errors the Error Reg indicates
them to the microprocessor. In the following, these different units are described in more
detail.

First of all, we define the opcodes that are stored in the FIFO and interpreted and
executed in the Finite State Machine (FSM). The following points must be observed:

• 8 different operations are needed: NOP, MontMul, ModAdd, ModSub, Add, Load,
Store, Reset.

• 2 AUs must be controlled separately.

• All registers R0 to R15 and also Z1 and Z2 must be addressable.

Considering the following requirements the scheme shown in Figure 5.3 is defined. The
opcodes consists two subopcodes each of 2 Byte size. Every subopcode is divided into 4
parts. The operation byte indicates the operation (load, store, MontMul, ModAdd, etc.).
Both, reg1 and reg2, have different meanings depending on the operation. For example,
load reg1 to reg2 or multiply reg1 with reg2. The flag byte is used for distinguishing

5.4 Coprocessor Control 43

between regular registers, from 0x0 to 0xF, and result registers Z1 and Z2. A detailed
description of the opcode design is attached in Appendix B.

opcode

subopcode1 subopcode2

operation flags reg1 reg2

4 byte

2 byte

1 nibble 1 nibble 1 nibble 1 nibble

Figure 5.3: Schematic presentation of an opcode and its parts. The opcode is parted into two
subopcodes, one for AU1 and one for AU2..

These opcodes are stored and handled by the FIFO. BRAMs of Xilinx provide built-
in FIFO support. Bit length of one opcode is 32 bit, thus one FIFO is sufficient. Two
signals are for storage capacity warnings, one for the outer domain to signal the FIFO is
empty and one for internal domain to signal the FSM for further existing opcodes. The
FSM calls with a separate signal for a new opcode if the last one is executed.

We define rules to process the opcodes:

• The order of execution is always subopcode1 before subopcode2.

• Per opcode it is only possible to instruct one AU. Subopcode1 is always for AU1
and subopcode2 always for AU2. However, if only one AU is needed, also NOP
operations are supported.

• It is possible to instruct different operations for both AUs, e. g., load R4 to XREG
of AU1 and store Z2 of AU2 to R6.

• If both tasks are arithmetic tasks, both AUs start simultaneously after loading of
all operands.

The basic processing steps of the FSM are shown in Figure 5.4. Firstly, check the first
sub-opcode. Depending on the operation, the different steps are executed. In the case
of an invalid subopcode the status bit of Error Reg is set to 1. After execution of
Subopcode1 the second part is checked and executed just like the first one. If both
subopcodes are arithmetic operations, both AUs receive the start signal simultaneously.
Otherwise, the respective AU receive the start signal immediately after loading both

44 5 Design and Implementation of the Coprocessor

operands. After execution of both subopcodes the FSM idles until all load, store, and
arithmetic calls are finished, the next opcode is received.

The possibility to signalize errors must be given. We realize it with Error Reg. For
the outer domain it shows the status and it can be reset. In the inner domain this block
is controlled by the FSM. The FSM sets the Error Reg to 1 in case of receiving wrong
opcodes.

Because Error Reg is reachable from two different clock domains it is not sufficient to
use only one register. To avoid this problem three cascaded registers must be used but
the first register is clocked by the internal clock and the other two by the external clock.
This realizes a dual rank synchronizer which synchronizes the internal and external
section.

5.5 Arithmetic Unit

The core element of this coprocessor is the Arithmetic Unit (AU). It must provide all
operations which are described in Chapter 4. These fundamental operations are modular
multiplication, which is solved with Montgomery multiplication, modular addition, and
modular subtraction. Additionally, simple addition is needed in order to sum carry and
safe of Montgomery multiplication result.

These operations are designed and implemented as shown in Figure 5.5. The FSM
controls the AU. It is triggered by the start signal from the outer FSM and the given
opcode. The three input registers, X and M with length |M | = |X| and Y with length
|Y |, are used for both elementary operations X±Y = Z mod M and MontMul(X, Y, M)
which uses also M ′. The input register of M ′ needs just 17 bit. The output register Z
is suggested within Mod Add/Sub. The input registers are loaded from the outer FSM.
There are three methods to load these input registers. Usually the input is load from the
data memory into one of these registers. The outer FSM controls the multiplexer and the
enable-signals of the FFs because of handling the internal data width of the coprocessor
of 256 bit. The second and the third ways are similar. In one case the own Z register and
in the other case the Z register of the other AU can be loaded directly in full bit length.
This method allows a faster computation, since the result are directly fed into the next
step without the need to save them in the data memory. The AU is completely controlled
by the FSM which itself receives control signals from the outer FSM. The FSM also sends
the finish signal if the AU completed the computation. The FSM controls which registers
are used for input in each arithmetic block. Both arithmetic blocks MontMul and Mod
Add/Sub are explained in more detail in the further subsections.

5.5.1 Modular Multiplier MontMul

This subsection describes the designed Montgomery multiplier or rather different versions
of Montgomery multipliers. Generally, it is an adaption of the CIOS multiplier of the
design in Nele Mentens dissertation as described in Section 4.5. Therefore, the changes
from her design to this elaborated design are explained first. After that, the further
changes and modifications are presented.

5
.5

A
rith

m
etic

U
n

it
45

if A = 0x0 if 0x1 � A � 0x4 if A = 0x5 if A = 0x6 if A = 0xF else

Check Subopcode1

ABCD

Get new Opcode

Load C in AU1 XReg

Load D in AU1 YReg

If E = 0x0 OR E > 0x4

 then start AU1

Load C in AU1 D
Store ZReg of AU1 in

BRAM Reg D
Reset Set Error Reg to 1

if E = 0x0 if 0x1 � E � 0x4 if E = 0x5 if E = 0x6 if E = 0xF else

Check Subopcode2

EFGH

Load G in AU2 XReg

Load H in AU2 YReg

If A = 0x0 OR A > 0x4

 then start AU2

Else

 Start both AUs

Load G in AU2 H
Store ZReg of AU2 in

BRAM Reg H
Reset Set Error Reg to 1

1 2

1 2

next Opcode

Wait for Finish of AUs

Figure 5.4: Single processing step of the coprocessor FSM for execution of one opcode.

46 5 Design and Implementation of the Coprocessor

FSM

MontMul

Mod Add/Sub

z_output

z_input

finish

inputstart opmode en_ctrl

|M|

M

2

M'YX

|M|

256

|M|

Z

Figure 5.5: Architecture design of an Arithmetic Unit. It consists mainly of two core functions,
Montgomery multiplication and modular addition/subtraction.

5.5 Arithmetic Unit 47

5.5.1.1 MontMul using 17×17 Multiplication

In CIOS design by Mentens there are two different types of blocks. I ′, II ′, and III ′

consist of DSPs and IV ′ consists of simple logic slices for a special 6-2 Carry-Safe Adder
(CSA). The following list shows all changes for the adaption from Mentens’ design to
the first design step.

• In our FPGA 17×24 multipliers are opposed to the 16×16 multipliers in Mentens’
design. So in a first step we use the DSPs as 17×17 multipliers. It saves two
iterations of the outer loop of the CIOS algorithm if |M | = 544 bit. Later also the
full available bit length are used.

• In Mentens’ design it is possible to calculate with M = (Mn−1, . . . , M0)2b , X =
(Xn, . . . , X0)2b , and Y = (Yn, . . . , Y0)2b . In this work it was predefined that
X, Y < M . Therefore, a single word of X can be saved (X = (Xn−1, . . . , X0)2b)
resulting in less hardware consumption. This does not apply for Y , because of the
implementation of the improved version of Montgomery multiplication.

• Mentens’ design has a separate CSA using simple logic slices. One aim of this
work is to use DSPs as much as possible and, instead, save other resources of the
FPGA. Therefore, the pre- and post-adders inside of the DSPs are used.

• In the given CIOS hardware design hardly any pipeline stages are used. Our first
approach in this project is to use almost all pipeline stages inside of the DSP.

Figure 5.6 shows the first adaption of the basic design. It is similar to the basic
CIOS design but the separate addition block IV ′ is integrated in both Multiply-Then-
Add (MTA) blocks, also named with I and III. The Add-Then-Multiply (ATM) block
II is similar to II ′ in Mentens’ work. The here designed CIOS multiplier is closer to
Algorithm 4.5.1. The complete schematic design corresponds to the outer loop. Yi is
selected with the multiplexer. MTA1 matches the first inner loop of the algorithm, the
calculation of U matches ATM, and the second inner loop is identical to MTA2. The
output is in carry-safe representation and is summed up externally of this multiplier.

For better understanding of correct sorting of all carry and safe words Figure 5.7 shows
one execution of the outer loop of CIOS. The upper part corresponds to MTA1. Here, X
and Yi are multiplied and SIIIprev and CIIIprev are added. The result of this calculation
is passed to MTA2. Here, U and M are multiplied and added to the previous result. The
lowest significant safe word of the resulting sum consists of zeros, thus, the complete safe
can be shifted by one word as required for Montgomery multiplication. The outcomes
are one safe and one carry which are used in the next loop or, if all loops are finished,
they are passed to final addition.

A MTA block is split into several columns of 17 bit words. Every column consists of a
post-add multiplier. The ATM block consists of one pre-add multiplier. Both, pre- and
post-add multiplier, are shown in Figures 5.8 and 5.9. The MTA block consists of single
post-add multipliers and one post-add multiplier consists of two DSPs. The first DSP
calculates

multiplicand1 ·multiplicand2 + summand1 = PCout/in

48 5 Design and Implementation of the Coprocessor

X Y M� M

sout

finish

start

F��

cout

III (MTA2)

II (ATM)

n*17(n+1)*17 17

17

LSB 17

LSB 17

17

n*17 n*17

n*17

ith word

I (MTA1)

n*17 n*17

U

Figure 5.6: Architecture Design of Montgomery Multiplier using 17×17bit Multipliers.

and the second one calculates

PCout/in + summand2 = carry||safe.

As described in Section 3.3 it is only possible to add one further summand in DSP48E1
if multiplication is used, since partial products are used in the DSP. Therefore a second
DSP is required for the addition of summand2. Computing U follows the reverse princi-
ple. The summands are added and then multiplied with multiplicand1. For U only the
lowest 17 bit are required. Following equation is implemented by the pre-add multiplier

(summand1 + summand2) ·multiplicand1 = safe mod 217.

The upper 17 bit are not used. Please note, that the resource optimization measures (e. g.
using multiple DSPs) are not in the scope of this project. We aim to increase the use of
DSPs and, thereby, keep other resources free. Some possible optimization measures are
described in following sections.

One thing is not mentioned so far about the post-add multiplier. The interimresult
indicated in Figure 5.8 as a dotted line is a shortcut required for saving one clock cycle
in one loop run. This fact can be recognized in Figure 5.10. The red area corresponds to
ATM, the yellow area corresponds to MTA1, and the green area corresponds to MTA2.
For the calculation of U it is necessary to add the lowest safe word of X0 · Yi and add
this result with lowest carry and safe word of the last loop. The pre-adder handles only

5.5 Arithmetic Unit 49

X

SIII ���
CIII ���

i

+
+

Xn

Yi

Sn

Cn

Xn-1

Yi

Sn-1

Cn-1

X1

Yi

S1

C1

X0

Yi

S0

C0

. . .

. . .

. . .

. . .

. . . SI0
CI0

SI1
CI1

SIn-1
CIn-1

SIn
CIn

M

SI

CI

U
+
+

Mn

U

Mn-1

U

M1

U

M0

U

. . .

. . .

. . .

. . .

. . . 0CIII0
SIII0

CIII1
SIIIn-2

CIIIn-1
SIIIn-1

CIIIn

SI0
SI1

SIn-1
SIn

CI0
CIn-2

CIn-1
CIn

SIIIn

. . . SIII1
SIIIn-2

SIIIn-1
SIIIn

. . . CIII0
CIII1

SIII ���	

CIII ���	

SIII0
SIIIn
�

CIIIn-2
CIIIn-1

CIIIn
CIIIn
�

SIII2
SIII3

CIII2
CIII3

M
T
A

1
M

T
A

2

a�
�
�

ca
��
��
�a
��
� o

rt

Figure 5.7: Schematic execution of one loop of CIOS algorithm. The upper part corresponds to
MTA1 and the part in the middle to MTA2. The bottom shows carry and safe after
reduction step.

50 5 Design and Implementation of the Coprocessor

s���mnd1 s���mnd2���������and1 ���������and2

�m��� sm��

interi����s���

17

DSP48E1

A B C D PCIN

P PCOUT

DSP48E1

A B C D PCIN

P PCOUT

17 17 17

lowest 17bit

17 17

34

Figure 5.8: Schematic design of one 17×17bit multiplier with post-addition.

summa�!"summand2 multiplicand

safe

1#

DSP48E1

A B C D PCIN

P PCOUT

17 17

17

34
($%& ')*+,

Figure 5.9: Schematic design of one 17×17bit multiplier with pre-addition.

5.5 Arithmetic Unit 51

two operands and therefore, the first pre-addition (X0 · Yi) + safelast occurs within the
MTA1. The interim result is passed to ATM. The pre-adder sums this interim result
with carrylast at the same time as in the post-add multiplier.

Generally, one loop iteration requires ten pipeline stages. They are presented in the
figure by the registers in the respectively pipeline stage. Both registers after a multipli-
cation step are intended to represent the partial products in register M of DSP48E1. In
Figure 5.10 eleven pipeline stages are shown but stage0 and stage9 carry data simultane-
ously. Thus, Montgomery multiplication (without final addition) requires 1 + (n +1) · 9
clock cycles.

5.5.1.2 MontMul using 17×24 Multiplication

In the last subsection we adapted Mentens’ design to the current requirements and
hardware. For easier modification the multiplier inside of a DSP48E1 is only used as
17×17 bit multiplier. In the next step the full available bit lengths are to be utilized. The
DSP48E1 provides a multiplier with 17×24 bit operand lengths for unsigned numbers.
At first glance, two ways are possible to use the varying operand sizes:

Word length of Yi and M ′ is 24 bit and X and M are split into words of length 17 bit.
This modification would result in a more efficient utilization of the multipliers in
the DSP48E1 with the same hardware usage. Furthermore, Y is split in less words
of 24 bit length instead of 17 bit which results in less iterations that are needed
and thus less time is required. This benefits would be nice but, unfortunately, it
is not possible to use this procedure by checking the functionality because of the
following problem.

In the last step before reduction the following operation is done:

M0 · U + SI0
= CIII0

||SIII0
.

M0 has length 17 bit and U and SI0
have a length of 24 bit. This results 24 bit safe

with 17 bit carry. Because of Algorithm 4.2.3, it is necessary to shift by b bit. In
this scenario M ′ has length 24 bit and therefore b = 24. However, after the last
post-add multiplier it is not possible to shift by 24 bit because only 17 zeros are
present. Consider the following example computation given:

X = 0x244451111 = {0x12222, 0x11111}17,

Y0 = 0x000001,

M = 0x333333333 = {0x19999, 0x13333}17, and

M ′ = −M−1 mod 224 = 0x000005.

MTA1 calculates

CI0
= 0x00000||SI0

= 0x011111← X0 · Y0 + SIII0 prev + CIII0 prev and

CI1
= 0x00000||SI1

= 0x012222← X1 · Y0 + SIII1 prev + CIII1 prev.

52 5 Design and Implementation of the Coprocessor

stage0

stage1

I II
-/0245

stage3

stage4

stage5

stage6

stage7

stage8

stage9

6789:;<= >7??@:;<=

AiX 6789last >7??@last BC B

Figure 5.10: Overview of the pipeline stages of Montgomery multiplier using 17×17bit multipli-
ers.

5.5 Arithmetic Unit 53

U is calculated by

U = 0x015555← (X0 + SIII0 prev + CIII0 prev) ·M ′ mod 224.

Eventually, MTA2 calculates

CIII0
= 0x00199 || SIII0

= 0x9A0000←M0 · U + SI0
,

CIII1
= 0x00222 || SIII1

= 0x21EEEF←M1 · U + SI1
+ CI0

, and

SIII2
= 0x000000← CI1

.

The next step in Algorithm 4.2.3 would be shift safe by 24 bit, but SIII0
consists

only of 17 zeros. This is caused by the fact that the lowest 24 bit of M must be
multiplied by U to allow correct shifting.

Therefore, this variant can not be implemented.

Word length of Yi and M ′ is 17 bit and X and M are split into words of length 24 bit.
Unlike the previous procedure there is no time advantage using this method be-
cause there still requires the processing of n + 1 words to process Y . Fewer DSPs
are needed instead, since X and M are split into fewer words. For better overview
the number of 24 bit words is defined as

ñ =

⌈
|M |+17

17

⌉
· 17

24

.

The reduction needs a shift by 17 bit because M ′ has length of 17 bit which follows
b = 17. In case of 17×17 multipliers the shift causes dropping the lowest safe
word. This simple solution does not work because one safe word has length 24 bit.
The consequence of this is the fact that the complete result after MTA2 must be
resorted. Figure 5.11 shows a solution. The upper part shows the output after
MTA2. The shift causes the top 24 bit to be the next safe and the lowest 17 bit of
the next higher safe to be the next carry. In the next loop MTA1 must calculate
the following operation in maximum

X0 · Y1 + SIII0 prev + CIII0 prev = 0x1FFFF · 0xFFFFFF + 0xFFFFFF + 0xFFFF80

= 0x20000FDFF80

→ 18 bit carry||24 bit safe.

In the next iteration the carry consists of 18 bit. This would cause the result to
grow with each iteration. Figure 5.11 shows a strategy to avoid iteratively growing
results. The highest bit is the 42nd bit which will be moved as LSB to the next
above carry word. This is filled up with zeros, thus no complications are possible.

This second approach of using 17×24 multipliers has been realized. The changes
shown have been implemented into the new design. The resulting design is shown in
Figure 5.12 with the following changes relative to the 17×17 design:

54 5 Design and Implementation of the Coprocessor

safe0carry0

safe1carry1

safe2carry2

17 zeros

shift by 17 bits

and sort

···

next_safe0

next_carry0

next_safe1

next_carry1

···

Figure 5.11: Schematic of shifting and sorting after MTA2 in 17×24 Version.

5.5 Arithmetic Unit 55

• All DSPs use their multiplier with full provided lengths 17×24.

• X and M are split into ñ words of 24 bit. Thus, less DSPs are necessary in both
MTAs.

• Generally, safe has 24 bit and carry has 18 bit size. After MTA2 the block Carry-
Safe Sort moves all carry and safe words as shown in Figure 5.11.

X Y DE M

sout

finish

start

GHJ

cout

KLNNOPQLRS QTNU

III VJWZ[\

]] VZWJ\

ñ^_`bdefg^fh 17

17

ijk fh
ijk fh

17

ñ^fl bñefg^_`

ñ^fl ñ^_`

opq rtuv

] VJWZ1\

ñ^_` ñ^_`

Figure 5.12: Schematic Design of MontgomeryMultiplier using 17×24Multipliers with Maximum
Number of DSPs.

5.5.1.3 More Efficient Usage of DSPs in Time

Previously, no consideration was taken to save DSPs. The CIOS algorithm was exactly
placed in hardware as given. One reason is the aim to use DSPs as much as possible in-
stead of other hardware resources. Almost all DSPs are unused for most of the execution
time. Therefore, some ideas for reducing the number of DSPs are given.

Multiplexing of MTA1 and MTA2: Both MTA blocks are identical and not used simul-
taneously. For the computation we can rearrange the computation onto a single
block instead of using a two blocks sparsely. The new MTA block is used twice in
the computation chain. The multiplexing for MTA input is controlled by the FSM.
Using this measure halves the number of DSPs used.

56 5 Design and Implementation of the Coprocessor

Multiplexing DSPs within MTA: Building on the recently presented modification it is
possible to halve the number of used DSPs again. Inside of one post-add multiplier
two DSPs are used. It is possible to use only one DSP48E1 by using the internal
loop of P 3. After the first addition with summand1, P will be reused and added
with summand2. This further reduction of used DSPs requires multiplexer for the
input.

Multiplexing of MontMul and FinalAdd: In the actual design of the AU as shown in
Figure 5.5 separate elements are defined for Montgomery multiplication and for
modular addition/subtraction. Reducing the number of used DSPs can be achieved
by combining both elements. One possible idea is to modify the MTA block so
that it can be used also for modular addition and modular subtraction. More
multiplexing units are necessary.

The first two presented modifications were implemented and tested. The third mod-
ification was not taken into account in this work. First tests have shown that the
modification slows the multiplier significantly.

5.5.1.4 Higher Throughput by Removing Pipeline Stages

Normally, one aim of a new hardware design is to reduce the critical path as much
as possible to obtain a higher clock rate. Here, however, it makes sense to omit some
pipeline stages and use a lower clock rate instead. The reason is that there is a serious
imbalance of combinatoric delay in pipeline stages. Mentens, too, uses no pipeline
stages in her design for the part that is equivalent to the outer loop of CIOS.

Therefore, another implemented and tested modification is the omitting of pipeline
stages as shown in Figure 5.13. It is similar to Mentens design. Only one pipeline stage
from the register after multiplication of MTA1 down to the result register of MTA2 is
configured.

In case of using one single MTA block also omitting of pipeline stages has been tested.
Because the single MTA block has to compute twice for one iteration, at least two
pipeline states are required.

Alternatively, balancing of pipeline stages would be possible but this results no advan-
tages for throughput.

5.5.2 Adder and Subtractor

The second main element of the AU is one unit for calculation of simple addition, modular
addition, and modular subtraction. Modular additions and modular subtractions are
required for scalar multiplication. The simple addition is needed for the final addition
of carry and safe after Montgomery multiplication.

Both modular variants are implemented as defined in Section 4.3. For modular addi-
tion both summands will be added and the result stored in an external register. Then

3P is the result register of a DSP48E1, see also Section 3.3.

5.5 Arithmetic Unit 57

stage0

I II

stage1

wxyz{|}~ �x���{|}~

Yi� wxyzlast �x���last �� �

Figure 5.13: Overview over the pipeline stages of Montgomery multiplier using 17×24bit multi-
pliers with only one pipeline stage.

58 5 Design and Implementation of the Coprocessor

this result is subtracted by M which corresponds to the conditional subtraction. The
FSM considers the most significant bit to verify a negative result after subtraction. The
DSPs use two’s complement representation, thus, the most significant bit is 1 if the
number is negative. If this result is positive, it is output, otherwise the first result. The
situation is similar for modular subtraction. If the result of the subtraction is negative
the conditional addition with the modulus must be performed. Otherwise, the result
can be output.

Figure 5.14 shows the structure of the designed unit. The inputs of the DSPs are
controlled by the FSM. One DSP48E1 provides the addition/subtraction of two 48 bit
operands plus one further carry bit. Therefore, all DSP48E1 receive 48 bit words as
operands. The carry will be passed via the dedicated cascading routing path CAR-
RYCASCOUT and CARRYCASCIN. The result for modular addition has to be be
saved for the conditional step. Therefore, one separate register is required. In the DSPs
only the P register is enabled. This seems unusual but the critical path was never met
in this unit in all tested AU variants. Thus, clock cycles can be saved. Which register
will output is controlled by the FSM. Please note, the final register, depending on the
fact which register will output, is the Z register as introduced in Section 5.5. This fact
is also indicated in the Figure 5.5 of the complete AU.

operand1 operand2 modulus

sum

D
S
P
4
8
E
1

D
S
P
4
8
E
1

D
S
P
4
8
E
1

D
S
P
4
8
E
1

���

start

������

������

��������������������

48 48 48 48 48 48 48 48

48 48 48 48

Figure 5.14: Architecture Design of the Addition Unit for Straight Addition and Modular Addi-
tion/Subtraction.

6 Evaluation

In this chapter the various designs of the CIOS multiplier and the complete coprocessor
are carefully evaluated and compared with previous existing work. The coprocessor has
been completely designed, implemented, and validated. The interface of the coprocessor
for the soft microprocessor core was not part of this work. Thus, all results about
complete ECC scalar multiplication are calculated (using various assumptions) and are
not experimentally measured. All timing and resource values are given from Vivado
Design Suite 2015.2 of Xilinx after place and route.

Since the most important part of the coprocessor is the CIOS multiplier, this element
is evaluated first. After that the results for timing and resource consumption of the
actual coprocessor are given.

One further note to the bit lengths tested. Due to the requirements by Rohde &
Schwarz SIT GmbH for high assurance, particularly larger bit lengths with additional
randomization factor are tested. For randomization length, a random value of 32 bit is
considered as proposed in Section 2.6.5. In Section 2.5 the interesting bit lengths of 256,
384, 512, and 521 bit are defined.1 This leads to the following bit lengths of 288, 416,
and 544 which are evaluated in the next sections.

It should be noted that in most publications shorter bit lengths, i. e., 160 or 224 bit
without randomization are used. Furthermore, all ECC primitives are implemented there
as well. This should be considered when comparing area and timing.

6.1 Simulation and Experimental Validation in Hardware

We implemented different variants of the designed multiplier and coprocessor. All vari-
ants were simulated with Aldec Riviera-PRO 2015.06 and examined for correct computa-
tion by comparison with a self-implemented reference implementation in a Python script.
The described designs were placed and routed with the Vivado Design Suite 2015.2 on
the Xilinx KC705 evaluation board which features the Kintex-7 XC7K325T FPGA. Af-
ter place and route, one step of the parallelized Montgomery ladder was examined on
the evaluation board with a debug tool provided by Vivado Design Suite. The correct
computation of the coprocessor and correct functionality of memory and all coprocessor
control units were validated. The computation outputs were examined by comparison
with a self-implemented reference implementation in a Python script, as well.

A validation of one complete ECC scalar multiplication was not possible because of
missing ECC primitives. The implementation of these primitives and the interface of
the coprocessor for the microprocessor were not part of this work.

1For 521 bit (NIST P521), a shorter randomization factor of 23 bit is assumed.

60 6 Evaluation

6.2 Timing and Resource Consumption of CIOS Multipliers

Main task of the coprocessor is scalar multiplication which requires many modular multi-
plications. These modular multiplications are the time consuming tasks in the designed
coprocessor. Therefore, this section considers the timing and resource consumption of
the different CIOS multipliers implemented.

Section 5.5.1 presented different options to design the Montgomery multiplier in hard-
ware. The following list shows all implemented and tested versions:

〈0〉: 17×17 multiplier with Max Number of DSPs and all pipeline stages,

〈1〉: 17×24 multiplier with Max Number of DSPs and all pipeline stages,

〈2〉: 17×24 multiplier with Max Number of DSPs and one pipeline stage,

〈3〉: 17×24 multiplier with Average Number of DSPs and all pipeline stages,

〈4〉: 17×24 multiplier with Average Number of DSPs and two pipeline stages, and

〈5〉: 17×24 multiplier with Low Number of DSPs and all pipeline stages.

The first implementation 〈0〉 is almost an identical implementation of Mentens’ design
of CIOS multiplier but using 17×17 multiplications as introduced in Section 5.5.1.1. All
other tested variants use 17×24 multiplications. The different options are explained in
the following:

• Max Number of DSPs corresponds to the design shown in Figure 5.6 and Figure
5.12, respectively, without any reduction optimization of the number of DSPs.

• Average Number of DSPs indicates that both MTA blocks are consolidated into
one block.

• Low Number of DSPs further reduces the number of DSPs from the Average Num-
ber of DSPs option by additional saving of DSPs by multiple use of one DSP inside
the MTA block.

• All pipeline stages means, that all pipeline stages are enabled as shown in Figure
5.10.

• One pipeline stage and two pipeline stages are variants in which pipeline stages
have been removed as suggested in Figure 5.13. Option 〈2〉 is implemented with
only one pipeline stage and 〈4〉 with two pipeline stages, after each pass of the
MTA block.

Variant 〈3〉 is an adaptation of 〈1〉 by multiple use of DSPs. Variant 〈5〉 is an adaptation
of 〈3〉. Variant 〈2〉 is equivalent to 〈1〉 but with less pipeline stages, variant 〈4〉 to 〈3〉
respectively.

All results of timing and resource consumption are given in Table 6.1. All multipliers
〈0〉 to 〈5〉 were evaluated for bit lengths 288, 416, and 544. Max. Freq. gives the theoretical

6.3 Conditions for the Evaluation of the Coprocessor 61

maximum frequency, extracted of the critical path, for the particular multiplier. Latency
reports the time for one complete Montgomery multiplication as shown in Algorithm
4.5.1. It is calculated by the maximum frequency and the number of required clock cycles.
The other four columns reflect the resource consumption of DSPs, LUTs, FFs, and logic
slices. For a graphical overview of all values, Figures 6.1, 6.2, and 6.3 show diagrams of
timing and resource consumption. Further diagrams can be found in Appendix C.

As hypothesized, the change from 17×17 to 17×24 multiplication does not only safe
DSPs, but also improves the multiplier’s performance slightly. Comparing 〈0〉 and 〈1〉
illustrate this finding. Both variants require the same number of clock cycles, but by
reducing the number of DSPs the critical path was reduced, too. This results in a higher
maximum frequency.

The relationship for timing between design and bit length is very similar in each design.
There are some significant differences between the design variants. If all pipeline stages
are used, variant 〈5〉 is slightly faster for larger bit lengths. It is particularly interesting
that both variants with less pipeline stages are clearly faster in all bit lengths for the
same level of hardware resources than their equivalents with all pipeline stages. This
results of a wide variety of the critical data paths in full pipelined versions. Variants 〈2〉
and 〈4〉 reduce the execution time by at least 50% in comparison to their counterparts
〈1〉 and 〈3〉.

In variant 〈1〉 to 〈3〉 the number of used DSPs almost halves. The adaption from 〈3〉
to 〈5〉 halves almost as well. Both adaptations achieve a reduction of used DSPs, but
an increase of the number of used LUTs. This applies particularly to the first adaption.
Figure 6.3 shows the relationship between used LUTs or FF and required slices. There
is an imbalance between FFs per slice and LUTs per slice of variants 〈0〉, 〈1〉, and 〈2〉.
These design variants consist mainly of arithmetics, which are computed by DSPs, and
registers. This explains the untypical imbalance. The other design variants needs logic
for multiplexing. The required logic increases the number of required LUTs and thus
normalize the relationship.

Overall, design 〈2〉 is the fastest. If DSPs are to be saved, then 〈4〉 is the preferred
variant. If no low clocked variant is sought, the design must find a compromise between
usage of DSPs and other resources.

6.3 Conditions for the Evaluation of the Coprocessor

Since ECC primitives and the interface of the coprocessor for the microprocessor are
not available, the assumptions for estimating the timing of scalar multiplication must be
defined. The coprocessor can only be controlled by opcodes but for scalar multiplication
in ECC different operations have to be performed. The opcode is given by two concate-
nated subopcodes with the following definition. For convenience the single operations
are abbreviated:

◦1|| ◦2 , where ◦1, ◦2 ∈ {N,M,A,S,L}

with N = NOP, M = MontMul, A = ModAdd or ModSub, S = Store, L = Load. For
simplicity addition and subtraction are subsumed.

62 6 Evaluation

T
able

6.1:
O
verview

ofhardw
are

consum
ption

and
latency

ofthe
different

im
plem

ented
C
IO

S
m
ultipliers

(different
bit

lengths).
M
axim

um
frequencies

are
extracted

from
tim

ing
analyzer

of
V
ivado.

L
atency

is
com

puted
from

the
provided

frequency
and

the
num

ber
of

clock
cycles

required.

D
e

sig
n

N
o

.
B

it
L

e
n

g
t

h
M

a
x

.
F

r
e

q
.

L
a
t

e
n

c
y

#
D

S
P

s
#

L
U

T
s

#
F

F
s

#
S

l
ic

e
s

[M
H
z]

[ns]

〈0〉
288

339.9
497.2

77
116

898
250

416
304.8

800.6
112

139
1
285

413
544

295.9
1
047.8

143
168

1
672

474

〈1〉
288

383.0
441.3

57
117

898
186

416
300.1

813.0
84

187
1
285

430
544

315.8
981.8

107
185

1
672

545

〈2〉
288

88.4
226.3

57
111

891
246

416
89.4

324.4
84

178
1
276

424
544

86.9
414.3

107
180

1
660

419

〈3〉
288

295.0
572.9

33
1
127

898
448

416
315.1

774.5
48

1
520

1
285

727
544

303.1
1
022.7

61
1
889

1
672

929

〈4〉
288

130.2
299.5

33
1
008

901
385

416
128.6

435.4
48

1
470

1
289

693
544

122.8
570.1

61
1
849

1
678

820

〈5〉
288

352.4
479.6

20
1
384

898
475

416
351.6

693.9
29

1
907

1
285

831
544

340.5
910.5

37
2
414

1
672

946

6.3 Conditions for the Evaluation of the Coprocessor 63

0

200

400

600

800

1000

1200

<0> <1> <2> <3> <4> <5>

L
a
te
n
cy

in
n
s

288 bit 416 bit 544 bit

Figure 6.1: Bar chart for illustration of the latencies of the different multiplier variants. Every
version has been tested with 288, 416, and 544bit.

0	

20	

40	

60	

80	

100	

120	

140	

160	

0	

500	

1000	

1500	

2000	

2500	

<0>	 <1>	 <2>	 <3>	 <4>	 <5>	

#
D
S
P
s	

#
L
U
T
s,
	F
F
s,
	a
n
d
	S
li
c
e
s

#LUT	544	bit	 #FF	544	bit	 #Slices	544	bit	 #DSP	544	bit	

Figure 6.2: Line graph shows the resource consumption of all designed multipliers (544 bit).

64 6 Evaluation

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

<0>	 <1>	 <2>	 <3>	 <4>	 <5>	

� e
la
�

��
��

i�

��
��
 ¡
��
¢ 	

�¢
��
£�
¤¢
� 	

�¢
� 	S

li
c
e
	

FFs in 288 bit FFs in 416 bit FFs in 544 bit

LUTs in 288 bit LUTs in 416 bit LUTs in 544 bit

Figure 6.3: Line graph shows the relationship between used slices and used FFs and LUTs of all
designed multipliers (different bit lengths).

The most important ECC operation is scalar multiplication, i. e., get the affine coordi-
nate of kP . Which coordinates are really required differs between the various algorithms.
For ECDSA signatures both coordinates are required. In other cases like ECIES or
ECDH only the x -coordinate might be required. Thus, in this evaluation a distinction
is made for both cases.

Our goal is to give an estimate for the number of arithmetic operations, especially
modular multiplication, for a complete scalar multiplication using our coprocessor.

In the following there is an overview of the individual steps which are required for a
complete point multiplication kP with P = (x , y). Input and output are always affine
coordinates. The input of the coprocessor are

• P = (x , y) affine together with modulus M of curve,

• randomized projective coordinate Z , and

• M ′ and R2 for Montgomery Multiplication.

We assume that all required values are already stored in BRAM.

1. Convert x and Z to Montgomery representation
The first step is the conversion into Montgomery representation so that the Mont-
gomery multipliers can be used. It is required to load M and M ′ into both AUs
and after that to convert with

x R = MontMul(x , R2, M) and ZR = MontMul(Z , R2, M).

6.3 Conditions for the Evaluation of the Coprocessor 65

1 LL, 1 MM, and 1 SS are required.

2. Convert affine x R, and if required y R, to Projective Montgomery X R
(and Y R)
After that, the conversion of x is required with

X = x · Z mod M.

In the simplest case Z is 1. Because of randomization Z must be a random value
with 1 < Z < M . So here 1 MN and 1 SN are needed. Note, if y value is also
required instead of the NOP, subopcode y can be converted into y R nearly for free
in the second AU (1 MM and 1 SS).

3. Montgomery ladder
Now all essential preconditions are fulfilled to calculate the Montgomery ladder like
Algorithm 4.2.3. Depending on the different bit lengths the execution time varies,
the bit length of k, usually in the order of the bit length of M (Hasse’s Theorem),
indicates the number of loop iterations. We obtain the number of operations by
counting the steps in Algorithm 4.1.1. In general, 9 MM, 1 MN, 6 AA, 2 AN, 4 SS,
and 10 SN are necessary for one iteration.

4. Convert x R, and if required y R, back to affine representation
The conversion of X R consists of one simple multiplication and one expensive
inversion. Since M is not a secret value the inversion are calculated by using
Fermat’s Little Theorem and square-and-multiply algorithm

(ZR)−1 = (ZR)M−2 mod M.

Then x R can be calculated by

x R = X R · (ZR)−1 mod M.

For uniformly distributed bits this requires on average 1.5 · |M | times MN in addi-
tion to another MN.

If y R is required, Formula (2.14) must be calculated, which needs an inversion.
This inversion is possible to compute almost without additional cost, because one
of the AU idles during the inversion of ZR. Therefore timing is similar to the first
variant, only some further operations are needed for the remaining calculation of
Formula 2.14. This process needs approximately 1.5·|M |×MM+5MM+3 AA+8 SS
operations.

5. Reverse transformation to x , and if required y , from Montgomery rep-
resentation
The reverse transformation of a Montgomery representation needs up to two mul-
tiplication operations.

x = MontMul(x R, 1, M) and if y is needed y = MontMul(y R, 1, M)

So 1 MN and 1 SN or 1 MM and 1 SS respectively are required.

66 6 Evaluation

These steps form the basis for the evaluation of the timing estimates. Totally,

|k|·(9·MM+1·MN+6·AA+2·AN+4·SS+10·SN)+1.5·MM+1·LL+9·MM+3·AA+11·SS

operations are estimated in total for a complete scalar multiplication.

6.4 Timing and Resource Consumption of Coprocessor

Now the timing of a scalar multiplication using the coprocessor can be examined. The
coprocessor is implemented once. Only the CIOS multiplier is replaced for evaluation.
Thus, all resources of the coprocessor remain the same in all cases. The different multipli-
ers are 〈1〉 to 〈5〉 from Section 6.2. Multiplier 〈0〉 was not continued for implementation
into the final coprocessor, due to its different word lengths and better timing results and
resource consumption of its counterpart 〈1〉.

All results of timing and resource consumption are given in Table 6.2 with variants
of the used CIOS multiplier 〈1〉 to 〈5〉. Tested bit lengths are 288, 416, and 544, as
well. Max. Freq. gives the theoretical maximum frequency, extracted of the critical path,
for the particular coprocessor. Latency reports the duration of one complete scalar
multiplication as defined in Section 6.3. It results from the maximal frequency and the
required clock cycles in column #Clock Cycles.We differentiate between a scalar point
multiplication with calculation of x and y , and calculation of only x . The other four
columns reflect the resource consumption of DSPs, LUTs, FFs, and logic slices. For a
graphical overview of all values, Figures 6.4, 6.5, and 6.6 show our results as graphs.
Further diagrams can be found in Appendix C.

Our results show two key findings. Firstly, there is only a minor difference in latency
between the five alternative multipliers when calculating x only or x and y . Thus,
the overhead of recovering the y -coordinate can be neglected. On the other hand, the
advantage of removing pipeline stages is considerably lower, especially for 288 bit. Only
the other two bit lengths benefit more from removing of pipeline stages. If variants with
all pipeline stages are compared, variant 〈1〉 is slightly faster for 288 bit compared to
variants 〈3〉 and 〈5〉. For 544 bit the difference is more significant. If variants with lower
clock frequencies are sought, variants with smaller bit lengths do not differ as strongly as
larger bit lengths. For example, variant 〈4〉 with 288 bit (2 343.3 µs) is only around 32%
faster than its equivalent 〈3〉 (3 434.6 µs), and around 20% faster than 〈1〉 (2 938.1 µs),
the fastest variant with all pipeline stages. For 544 bit it results 45% faster than 〈3〉 and
42% faster than 〈1〉.

The resource consumption for the complete coprocessor shows the same behavior as
only for the CIOS multipliers. The number of FFs differs slightly between variants
with all and with less pipeline stages. The required overhead of LUTs to control the
coprocessor shows an interesting behavior. While the number of LUTs per slice increase
significantly, the results for CIOS multipliers only decrease. Almost all LUTs are asso-
ciated to the coprocessor design for variants 〈0〉 and 〈1〉. As mentioned, it increases if
variants of CIOS multipliers are used with reduced numbers of DSPs.

6.4 Timing and Resource Consumption of Coprocessor 67

T
ab

le
6.
2:

O
ve
rv
ie
w

of
ha

rd
w
ar
e
co
ns
um

pt
io
n
an

d
la
te
nc
y
of

th
e
co
m
pl
et
e
co
pr
oc
es
so
r
w
it
h
di
ffe

re
nt

m
ul
ti
pl
ie
rs

(d
iff
er
en
t
bi
t
le
ng

th
s)
.

M
ax

im
um

fr
eq
ue
nc
ie
s
ar
e
ex
tr
ac
te
d

fr
om

ti
m
in
g
an

al
yz
er

of
V
iv
ad

o.
T
he

nu
m
be

r
of

cl
oc
k
cy
cl
es

fo
r
on

e
co
m
pl
et
e
po

in
t

m
ul
ti
pl
ic
at
io
n
is
es
ti
m
at
ed

as
sh
ow

n
in

Se
ct
io
n
6.
3.

L
at
en
cy

is
co
m
pu

te
d
fr
om

th
e
pr
ov

id
ed

fr
eq
ue
nc
y
an

d
th
e
nu

m
be

r
of

cl
oc
k

cy
cl
es

re
qu

ir
ed
.
N
ot
e,

bo
th

cl
oc
k
cy
cl
es

an
d
la
te
nc
y,

ar
e
gi
ve
n
on

ce
fo
r
po

in
t
m
ul
ti
pl
ic
at
io
n
w
it
h
ne
ed
ed

ca
lc
ul
at
in
g
of

y
an

d
on

ce
w
it
ho

ut
ca
lc
ul
at
in
g

y
.

D
e

si
g

n
B

it
M

a
x

.
F

r
e

q
.

L
a
t

e
n

c
y

#
C

l
o

c
k

C
y

c
l
e

s
#

D
S

P
s

#
L

U
T

s
#

F
F

s
#

S
l
ic

e
s

N
o

.
L

e
n

g
t

h
x

o
n

ly
x

a
n

d
y

x
o

n
ly

x
a

n
d

y

[M
H
z]

[µ
s]

[µ
s]

〈1
〉

28
8

24
8.
5

2
93
8.
1

2
95
8.
1

73
0
15
5

73
5
11
1

11
6

3
92
9

2
79
8

1
43
2

41
6

20
2.
1

7
07
2.
8

7
10
7.
8

1
42
9
72
1

1
43
6
78
5

16
8

5
44
5

3
77
0

1
93
8

54
4

22
2.
5

10
44
7.
5

10
49
2.
0

2
32
4
25
4

2
33
4
14
4

21
4

6
96
6

4
84
4

2
34
9

〈2
〉

28
8

89
.6

2
50
5.
7

2
54
9.
2

22
4
55
1

22
8
44
9

11
6

3
83
7

2
28
4

1
68
1

41
6

81
.3

4
60
1.
3

4
66
9.
6

37
4
24
5

37
9
79
3

16
8

5
36
4

3
15
4

2
30
5

54
4

80
.8

7
11
8.
1

7
21
6.
6

57
5
01
8

58
2
97
0

21
4

7
41
6

3
92
2

2
43
9

〈3
〉

28
8

21
2.
6

3
43
4.
6

3
45
8.
0

73
0
15
5

73
5
11
1

68
6
34
4

2
79
8

2
10
4

41
6

20
5.
4

6
95
9.
9

6
99
4.
3

1
42
9
72
1

1
43
6
78
5

96
8
84
8

3
77
0

2
66
3

54
4

21
2.
4

10
94
4.
9

10
99
1.
5

2
32
4
25
4

2
33
4
14
4

12
2

11
81
3

4
84
4

3
42
5

〈4
〉

28
8

12
1.
3

2
34
3.
3

2
37
6.
4

28
4
23
9

28
8
26
3

68
5
62
8

2
29
6

1
82
2

41
6

12
1.
2

4
12
3.
4

4
17
0.
7

49
9
92
9

50
5
65
9

96
8
04
7

3
18
2

2
67
6

54
4

13
0.
0

6
01
2.
1

6
07
5.
0

78
1
59
8

78
9
78
1

12
2

10
40
0

3
93
4

3
25
6

〈5
〉

28
8

22
5.
3

3
24
1.
2

3
26
3.
2

73
0
15
5

73
5
11
1

42
6
03
9

2
79
8

1
63
0

41
6

21
5.
4

6
63
8.
2

6
67
1.
0

1
42
9
72
1

1
43
6
78
5

58
8
45
9

3
77
0

2
37
9

54
4

19
8.
2

11
72
8.
2

11
77
8.
1

2
32
4
25
4

2
33
4
14
4

74
10

90
2

4
84
4

3
32
7

68 6 Evaluation

0	

2000	

4000	

6000	

8000	

10000	

12000	

<1>	 <2>	 <3>	 <4>	 <5>	

L
a
te
n
cy
	i
n
	µ

s	

288	bit	-	x	only	 416	bit	-	x	only	

416	bit	-	x	and	y	

544	bit	-	x	only	

544	bit	-	x	and	y	288	bit	-	x	and	y	

Figure 6.4: Bar chart for illustration of the latencies of the coprocessor with different multiplier
variants used. Every version has been tested with 288, 416, and 544bit.

0	

40	

80	

120	

160	

200	

240	

0	

2000	

4000	

6000	

8000	

10000	

12000	

<1>	 <2>	 <3>	 <4>	 <5>	

#
D
S
P
s	

#
L
U
T
s,
	F
F
s,
	a
n
d
	S
li
c
e
s	

#LUTs	544	bit	 #FFs	544	bit	 #Slices	544	bit	 #DSPs	544	bit	

Figure 6.5: Line graph shows the resource consumption of the coprocessor with different multi-
plier variants used (544 bit).

6.5 Comparison to Existing Work 69

0,0	

0,5	

1,0	

1,5	

2,0	

2,5	

3,0	

3,5	

4,0	

<1>	 <2>	 <3>	 <4>	 <5>	

R
e
la
�

¥¦
§¨

i©

ª«
¬
®¯
¬
° 	

±°
§¥
²
³°
§ 	

©°
 	S

li
c
e
	

FFs	in	288	bit	 FFs	in	416	bit	 FFs	in	544	bit	

LUTs	in	288	bit	 LUTs	in	416	bit	 LUTs	in	544	bit	

Figure 6.6: Line graph shows the relationship between used slices and used FFs and LUTs of the
coprocessor with different multiplier variants used (different bit lengths).

There is no simple answer to which variant is the preferred one and depends on the
use case. If a low clock rate is acceptable then 〈4〉 is preferable. Otherwise, it depends
on the number of DSPs available. Variant 〈1〉 with the maximum number of DSPs is
slightly faster than 〈3〉 and 〈5〉. When there are less DSPs available, variants with fewer
DSPs must be selected.

One note to these results. The real implementation may differ slightly, because some
special cases were neglected. For example, there are no distinctions made in modular
addition and modular subtraction for conditional subtraction and addition of M .

6.5 Comparison to Existing Work

For a more precise evaluation it is helpful to compare with existing work. Three publi-
cations have been selected for comparison which have followed similar requirements and
aims. Comparable works are [Men07], [Gui10], and [MLPJ13]. Other papers are not
listed because of missing either countermeasures against SCA or implementations for
curves over F2m .

Table 6.3 reports some reference values. The first four lines with 〈1〉, 〈2〉, 〈3〉, and
〈4〉 are different variants of the design in this work. Our design uses 288 bit instead of
256 bit due to 32 bit randomization buffer. Furthermore, comparing to other designs, we
assume the logic for ECC primitives is not implemented in the coprocessor. Only the

70 6 Evaluation

control by opcodes is provided. This should be considered when comparing latencies
and area consumption.

The table shows that the resource consumption of logic units in our design is lower
or equivalent to the other comparable works. The usage of DSPs is much higher which
results from the motivation to use many DSPs than other resources as much as possible.
Please note, the comparison for resource consumption with [Gui10] is limited because
the work is based on a FPGA of different manufacturer. Frequencies of variants with
less pipeline stages 〈2〉 and 〈4〉 are comparable to [Men07]. The frequency of the high
clocked variants are also comparable to [Gui10] and [MLPJ13].

To compare timings of our design with Mentens’ design, we assume that the latency
for scalar multiplication grows cubic with the bit length. Thus, we get estimate latencies
of 2.94ms× (256/288)3 = 2.06ms for 〈1〉, 1.76ms for 〈2〉, 2.41ms for 〈3〉, and 1.64ms for
〈4〉. Except for 〈3〉, all variants of our design are faster than the reported results in
[Men07].

The comparison with the other investigations shows that our coprocessor design is
significantly slower. The reason for this is the vastly different arithmetic implementa-
tions. In [Gui10] RNS multipliers are implemented unlike desired here (flexibility) and
in [MLPJ13] they use a windowing method for scalar multiplication. The windowing
method requires precomputations and further RAM which was undesirable for our use
case.

Table 6.3: Comparison between the designed coprocessor in this work and other existing designs.

Curve Device # Logic # DSPs Frequency Delay
Units [MHz] [ms]

〈1〉 288 any Kintex-7 1 432 Slices 116 248 2.94
〈2〉 288 any Kintex-7 1 681 Slices 116 89 2.50
〈3〉 288 any Kintex-7 2 104 Slices 68 212 3.43
〈4〉 288 any Kintex-7 1 822 Slices 68 121 2.34

[Men07] 256 any Virtex-2 Pro 3 529 Slices 67 67 2.35
[Gui10] 256 any Stratix II 9 177 ALM 157 157 0.68
[MLPJ13] 256 any Virtex-5 1 725 Slices 37 291 0.38

7 Conclusion

The aim of this work was the design and implementation of an FPGA-based arithmetic
coprocessor for scalar multiplication in elliptic curves. The coprocessor can also be used
to perform general arithmetic operations, like modular multiplication, addition, and
subtraction. However, it was designed especially to be used in Elliptic Curve Cryptog-
raphy (ECC). Different design constraints and design principles had to be met:

• Flexibility and security is much more important than speed and area.

• The coprocessor shall handle elliptic curves over Fp, p > 3, prime with a verifiable
pseudo-random prime structure, so not only NIST curves should be possible, but
for example also Brainpool curves.

• Different bit lengths of p must be supported.

• Use DSPs to avoid other resource consumption in the FPGA.

• Design should be protected/protectable against all type of SCAs. Especially, the
use of an additional randomization buffer should be possible.

All of these design constraints have been satisfied.
The design uses reduced projective coordinates with (X , Z) representation. This has

several advantages: No inversion is required for point addition and doubling, only the
back transformation from projective to affine coordinates requires two modular inversions.
In contrast to the standard projective representation (X , Y , Z) only two rather than three
coordinates are used for computation. This saves registers and arithmetic operations.

Usage of reduced projective coordinates is very closely related to the Montgomery
ladder by Brier and Joye [BJ02] for curves in short Weierstrass form. A Montgomery
ladder is a countermeasure against Timing Analysis (TA) and Simple Power Analysis
(SPA). More specifically, the Montgomery ladder for parallel scalar multiplication by
Fischer et al. [FGKS02] was used for the design of the coprocessor. This parallel
version requires only the time for 10 modular multiplications and utilizes the resource
of the FPGA more efficiently.

The coprocessor consists mainly of data memory, instruction FIFO, and Arithmetic
Units (AUs). BRAM is used for data exchange between processor and coprocessor. The
coprocessor is controlled by opcodes which the coprocessor writes into the FIFO. It
organizes the queue of opcodes and dequeues the first opcode to the FSM. Both, BRAM
and FIFO, can operate in asynchronous mode. Thus, the coprocessor can operate with a
separate clock frequency. Two AUs are used for a parallel variant of scalar multiplication

72 7 Conclusion

by Fischer et al. [FGKS02]. Each AU consists of a modular multiplier and a modular
adder/subtractor. All computations are performed by using DSPs.

Modular multiplications are time-consuming. Therefore, one main task of the work
was to design an efficient modular multiplier. Due to the demand to support flexible
bit lenghts, Montgomery multiplication computed with the CIOS algorithm by Koç
et al. [Koç95] is used. Mentens [Men07] implemented the improved variant of the
CIOS algorithm, see [Wal99]. This improved Montgomery multiplication is more robust
with respect to Timing Analysis. Therefore, Mentens hardware design of the improved
CIOS algorithm was an important reference for this work.

Compared to Mentens’ PhD thesis, a newer version of FPGA was used. Therefore,
the design was modified for better utilization of DSPs, e. g. use 17×24 rather than
16×16 multiplication. Further, modifications to this basic design like multiple use of
DSPs (multiplexing) and reduction of pipeline stages were realized and evaluated.

The coprocessor was evaluated with different variants of designed CIOS multipliers:
The first variant of the CIOS multiplier uses 17×17 multiplication in the DSP, very
similar to Mentens’ design. The next step was to exploit the features of new DSPs
by using 17×24 multiplication in the DSP. Building on this, further optimizations are
evaluated with 288 bit, 416 bit, and 544 bit. These bit lengths are not typical for ECC.
They are caused by an additional 32 bit buffer, usable, for example, for the randomization
of the prime p. Comparing all variants, the modifications with less pipeline stages are
up to 55% faster than their equivalents with all pipeline stages, due to imbalanced delay
in the pipeline stages.

In comparison with the work of Mentens our design is faster. The comparison is not
trivial because we use 288 bit instead of 256 bit. If we assume that the latency for scalar
multiplication grows cubically with the bit length, it can be estimated that our simplest
design 〈1〉 requires 2.06ms1 for 256 bit. Mentens’ design for 256 bit requires 2.35ms.
The comparison of resource consumption is difficult too, because Mentens implemented
a complete coprocessor with all ECC primitives. Our coprocessor currently provides only
the required finite field arithmetic for ECC. Instead of a large FSM it was decided by
Rohde & Schwarz SIT GmbH to use a soft microprocessor core which is more flexibly
adjustable to changing requirements.

Other efficient designs often use precomputation [MLPJ13] or other efficient arithmetic
procedures for modular multiplication, like RNS in [Gui10]. These designs do not satisfy
the required flexibility.

For future work, some possible improvements are proposed. Setting of pipeline stages
has been done based on intuition. For better timing results they must be set more
precisely. Especially the variants with low clock frequency and higher bit length will
benefit particularly. There is still some room for optimization of the Finite State Machine
(FSM) of the coprocessor by more efficient opcode processing.

Following our work, a host interface from a soft microprocessor core to this coprocessor
has to be implemented. This will be followed by the implementation of various ECC
primitives and protocols in software.

12.94 ms × (256/288)3

A Acronyms

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

ATM Add-Then-Multiply

AU Arithmetic Unit

BRAM Block-RAM

CIOS Coarsely Integrated Operand Scanning

CLB Configurable Logic Block

CSA Carry-Safe Adder

DPA Differential Power Analysis

DSA Digital Signature Algorithm

DSP Digital Signal Processing Block

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie Hellman

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

ECIES Elliptic Curve Integrated Encryption Scheme

EEA Extended Euclidean Algorithm

FF Flip-Flop

FIFO First-In-First-Out

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GTP Gigabit Transceiver

LUT Look-Up Table

MAC Message Authentication Code

MTA Multiply-Then-Add

NIST National Institute of Standards and Technology

RNS Residue Number System

SCA Side-Channel Analysis

SOS Separated Operand Scanning

SPA Simple Power Analysis

74 A Acronyms

STS Station-to-Station

TA Timing Analysis

TLS Transport Layer Security

B Explanation of Coprocessor Opcodes

One opcode consists of two subopcodes with each 2 Byte as shown in Figure 5.3 on
page 43. The following rules are defined for the different operations. Note, if a Byte is
symbolized with X that this Byte will ignored. R␣ presents a regular R register and Z␣
a result register.

NOP:

[0x0XXX] – No operation.

Montgomery Multiplication:

[0x10VW] – MontMul(RV, RW) with V,W ∈ {0, . . . , 0xF}.
[0x11VW] – MontMul(RV, ZW) with V ∈ {0, . . . , 0xF} and W ∈ {1, 2}.
[0x14VW] – MontMul(ZV, RW) with V ∈ {1, 2} and W ∈ {0, . . . , 0xF}.
[0x15VW] – MontMul(ZV, ZW) with V,W ∈ {1, 2}.

Modular Addition:

[0x20VW] – RV + RW mod MReg with V,W ∈ {0, . . . , 0xF}.
[0x21VW] – RV + ZW mod MReg with V ∈ {0, . . . , 0xF} and W ∈ {1, 2}.
[0x24VW] – ZV + RW mod MReg with V ∈ {1, 2} and W ∈ {0, . . . , 0xF}.
[0x25VW] – ZV + ZW mod MReg with V,W ∈ {1, 2}.

Modular Subtraction:

[0x30VW] – RV − RW mod MReg with V,W ∈ {0, . . . , 0xF}.
[0x31VW] – RV − ZW mod MReg with V ∈ {0, . . . , 0xF} and W ∈ {1, 2}.
[0x34VW] – ZV − RW mod MReg with V ∈ {1, 2} and W ∈ {0, . . . , 0xF}.
[0x35VW] – ZV − ZW mod MReg with V,W ∈ {1, 2}.

Simple Addition:

[0x40VW] – RV + RW with V,W ∈ {0, . . . , 0xF}.
[0x41VW] – RV + ZW with V ∈ {0, . . . , 0xF} and W ∈ {1, 2}.
[0x44VW] – ZV + RW with V ∈ {1, 2} and W ∈ {0, . . . , 0xF}.
[0x45VW] – ZV + ZW with V,W ∈ {1, 2}.

76 B Explanation of Coprocessor Opcodes

Load:

[0x50V0] – Load RV to XReg with V ∈ {0, . . . , 0xF}.
[0x54V0] – Load ZV to XReg with V ∈ {1, 2}.
[0x50V1] – Load RV to YReg with V ∈ {0, . . . , 0xF}.
[0x54V1] – Load ZV to YReg with V ∈ {1, 2}.
[0x50V2] – Load RV to MReg with V ∈ {0, . . . , 0xF}.
[0x54V2] – Load ZV to MReg with V ∈ {1, 2}.
[0x50V3] – Load RV to M’Reg with V ∈ {0, . . . , 0xF}.
[0x54V3] – Load ZV to M’Reg with V ∈ {1, 2}.

Store:

Note, it is not possible to store in special registers R0 and R1!
[0x6XXV] – Store ZReg to RV with V ∈ {2, . . . , 0xF}.

Reset:

[0xFXXX] – All registers inside of both AUs are reseted. Other subopcode is ignored.

Examples:

[0x242C5022] – AU1 calculates Z2 + R12 mod M and AU2 loads R2 into its MReg.
[0x0000600F] – AU1 do nothing and AU2 store ZReg to R15.
[0x10231511] – AU1 calculates MontMul(R2, R3) and AU2 calculates MontMul(Z1, Z1).

C Further Diagrams for Evaluation

This chapter shows some further diagrams of evaluation of hardware consumption in
chapter 6.

0	

20	

40	

60	

80	

100	

120	

140	

160	

0	

500	

1000	

1500	

2000	

2500	

<0>	 <1>	 <2>	 <3>	 <4>	 <5>	

#
D
S
P
s	

#
L
U
T
s,
	F
F
s,
	a
n
d
	S
li
c
e
s	

#LUT	288	bit	 #FF	288	bit	 #Slices	288	bit	 #DSP	288	bit	

Figure C.1: Line graph shows the resource consumption of all designed multipliers (288 bit).

78 C Further Diagrams for Evaluation

0	

20	

40	

60	

80	

100	

120	

140	

160	

0	

500	

1000	

1500	

2000	

2500	

<0>	 <1>	 <2>	 <3>	 <4>	 <5>	

#
D
S
P
s	

#
L
U
T
s,
	F
F
s,
	a
n
d
	S
li
c
e
s

#LUT	416	bit	 #FF	416	bit	 #Slices	416	bit	 #DSP	416	bit	

Figure C.2: Line graph shows the resource consumption of all designed multipliers (416 bit).

0	

40	

80	

120	

160	

200	

240	

0	

2000	

4000	

6000	

8000	

10000	

12000	

<1>	 <2>	 <3>	 <4>	 <5>	

#
D
S
P
s	

#
L
U
T
s,
	F
F
s,
	a
n
d
	S
li
c
e
s	

#LUTs	288	bit	 #FFs	288	bit	 #Slices	288	bit	 #DSPs	288	bit	

Figure C.3: Line graph shows the resource consumption of the coprocessor with different multi-
plier variants used (288bit).

79

0	

40	

80	

120	

160	

200	

240	

0	

2000	

4000	

6000	

8000	

10000	

12000	

<1>	 <2>	 <3>	 <4>	 <5>	
#
D
S
P
s	

#
L
U
T
s,
	F
F
s,
	a
n
d
	S
li
c
e
s	

#LUTs	416	bit	 #FFs	416	bit	 #Slices	416	bit	 #DSPs	416	bit	

Figure C.4: Line graph shows the resource consumption of the coprocessor with different multi-
plier variants used (416bit).

List of Figures

2.1 Pyramid shows the different elementary levels of using ECC 5
2.2 ECDH Station-to-Station Protocol. 17
2.3 SPA attack against the RSA algorithm . 21

3.1 Simplified diagram of a SLICEL in XILINX 7-Series. 24
3.2 Schematic of 7-Series DSP48E1 Slice . 26
3.3 Schematic of 7-Series RAMB36E1 Slice . 27

4.1 Schematic execution of parallelized CIOS algorithm by Mentens 35
4.2 Architecture of CIOS multiplier by Mentens 37

5.1 Architecture of designed coprocessor. 41
5.2 Architecture of BRAM consists of eight parallel RAMB36E1 slices. 42
5.3 Schematic presentation of an opcode and its parts 43
5.4 Single processing step of the coprocessor FSM for execution of one opcode. 45
5.5 Architecture design of an Arithmetic Unit 46
5.6 Architecture Design of Montgomery Multiplier using 17×17bit Multipliers. 48
5.7 Schematic execution of one loop of CIOS algorithm 49
5.8 Schematic design of one 17×17bit multiplier with post-addition. 50
5.9 Schematic design of one 17×17bit multiplier with pre-addition. 50
5.10 Overview of the pipeline stages of Montgomery multiplier using 17×17 bit

multipliers. 52
5.11 Schematic of shifting and sorting after MTA2 in 17×24 Version. 54
5.12 Schematic Design of Montgomery Multiplier using 17×24 Multipliers with

Maximum Number of DSPs. 55
5.13 Overview over the pipeline stages of Montgomery multiplier using 17×24 bit

multipliers with only one pipeline stage. 57
5.14 Architecture Design of the Addition Unit for Straight Addition and Mod-

ular Addition/Subtraction. 58

6.1 Bar chart for illustration of the latencies of the different multiplier vari-
ants. Every version has been tested with 288, 416, and 544 bit. 63

6.2 Line graph shows the resource consumption of all designed multipliers
(544 bit). 63

6.3 Line graph shows the relationship between used slices and used FFs and
LUTs of all designed multipliers (different bit lengths). 64

82 List of Figures

6.4 Bar chart for illustration of the latencies of the coprocessor with different
multiplier variants used. Every version has been tested with 288, 416, and
544 bit. 68

6.5 Line graph shows the resource consumption of the coprocessor with dif-
ferent multiplier variants used (544 bit). 68

6.6 Line graph shows the relationship between used slices and used FFs and
LUTs of the coprocessor with different multiplier variants used (different
bit lengths). 69

C.1 Line graph shows the resource consumption of all designed multipliers
(288 bit). 77

C.2 Line graph shows the resource consumption of all designed multipliers
(416 bit). 78

C.3 Line graph shows the resource consumption of the coprocessor with dif-
ferent multiplier variants used (288 bit). 78

C.4 Line graph shows the resource consumption of the coprocessor with dif-
ferent multiplier variants used (416 bit). 79

List of Tables

2.1 Overview of costs of point addition and doubling in different coordinate
representations. 11

6.1 Overview of hardware consumption and latency of the different imple-
mented CIOS multipliers (different bit lengths) 62

6.2 Overview of hardware consumption and latency of the complete coproces-
sor with different multipliers (different bit lengths) 67

6.3 Comparison between the designed coprocessor in this work and other ex-
isting designs. 70

List of Algorithms

2.3.1 Double-and-Add for Scalar Multiplication 12
2.3.2 Double-and-Add-Always for Scalar Multiplication 13
2.3.3 Montgomery Ladder for Scalar Multiplication 13
2.4.1 ECDSA signature generation . 15
2.4.2 ECDSA signature verification . 15
2.4.3 ECIES encryption . 18
2.4.4 ECIES decryption . 18

4.1.1 Parallel Montgomery Ladder — One Step [FGKS02] 30
4.1.2 Parallel Montgomery Ladder . 30
4.2.1 Basic Montgomery Reduction MRed(Z ′) 31
4.2.2 Word-Level Montgomery Product [Men07] 32
4.2.3 Improved Montgomery Product MontMul(X, Y, M) [Men07] 33
4.3.1 Modular Addition ModAdd(X, Y, M) 33
4.3.2 Modular Subtraction ModSub(X, Y, M) 34
4.4.1 Inversion in Fp — Fermat’s little theorem 34
4.5.1 Variation of CIOS method for Montgomery Multiplication with

integration of Improved Montgomery Multiplication 36

Bibliography

[ANSI-X9.62:98] ANSI X9.62-1998. Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). Stan-
dard, American National Standards Institute, Washington, D.C., United States,
1998.

[ANSI-X9.63:11] ANSI X9.63-2011. Public Key Cryptography for the Financial Services
Industry: Key Agreement and Key Transport Using Elliptic Curve Cryptog-
raphy. Standard, American National Standards Institute, Washington, D.C.,
United States, 2011.

[BB03] David Brumley and Dan Boneh. Remote Timing Attacks Are Practical. In
Proceedings of the 12th USENIX Security Symposium, Washington, D.C., USA,
August 4-8, 2003, 2003.

[BCC+14] Daniel J. Bernstein, Tung Chou, Chitchanok Chuengsatiansup, Andreas Hüls-
ing, Tanja Lange, Ruben Niederhagen, and Christine van Vredendaal. How to
manipulate curve standards: a white paper for the black hat. IACR Cryptology
ePrint Archive, 2014:571, 2014.

[BJ02] Éric Brier and Marc Joye. Weierstraß Elliptic Curves and Side-Channel At-
tacks. In David Naccache and Pascal Paillier, editors, Proceedings of PKC 2002,
volume 2274 of Lecture Notes in Computer Science, pages 335–345. Springer
Berlin Heidelberg, 2002.

[BL15a] Daniel J. Bernstein and Tanja Lange. Explicit-Formulas Database. https://

www.hyperelliptic.org/EFD/, 2015. accessed 19 May 2015.

[BL15b] Daniel J. Bernstein and Tanja Lange. Safecurves: choosing safe curves for
elliptic-curve cryptography. http://safecurves.cr.yp.to/, 2015. accessed
10 Juni 2015.

[Bro10] Daniel R. L. Brown. SEC 2: Recommended Elliptic Curve Domain Parameters.
Standard, Certicom Research, 2010.

[CMO98] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient Elliptic Curve
Exponentiation Using Mixed Coordinates. In Advances in Cryptology - ASI-
ACRYPT ’98, International Conference on the Theory and Applications of
Cryptology and Information Security, Beijing, China, October 18-22, 1998,
Proceedings, pages 51–65, 1998.

https://www.hyperelliptic.org/EFD/
https://www.hyperelliptic.org/EFD/
http://safecurves.cr.yp.to/

88 Bibliography

[Cor99] Jean-Sébastien Coron. Resistance against Differential Power Analysis for Ellip-
tic Curve Cryptosystems. In Cryptographic Hardware and Embedded Systems,
First International Workshop, CHES’99, Worcester, MA, USA, August 12-13,
1999, Proceedings, pages 292–302, 1999.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[FGKS02] Wieland Fischer, Christophe Giraud, Erik Woodward Knudsen, and Jean-
Pierre Seifert. Parallel scalar multiplication on general elliptic curves over
Fp hedged against Non-Differential Side-Channel Attacks. Cryptology ePrint
Archive, Report 2002/007, 2002. http://eprint.iacr.org/.

[FIPS-186-4:13] FIPS PUB 186-4. Digital Signature Standard (DSS). Standard, Na-
tional Institute of Standards and Technology, Gaithersburg, MD, United States,
2013.

[FPRE15] Jean-Pierre Flori, Jérôme Plût, Jean-René Reinhard, and Martin Ekerå. Di-
versity and transparency for ECC. IACR Cryptology ePrint Archive, 2015:659,
2015.

[GP08] Tim Güneysu and Christof Paar. Ultra High Performance ECC over NIST
Primes on Commercial FPGAs. In E. Oswald and P. Rohatgi, editors, Proceed-
ings of CHES 2008, volume 5154 of Lecture Notes in Computer Science, pages
62–78. Springer-Verlag, 2008.

[Gui10] Nicolas Guillermin. A High Speed Coprocessor for Elliptic Curve Scalar Multi-
plications over Fp. In S. Mangard and F.-X. Standaert, editors, Proceedings of
CHES 2010, volume 6625 of Lecture Notes in Computer Science, pages 48–64.
Springer-Verlag, 2010.

[HMV04] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to Elliptic
Curve Cryptography. Springer-Verlag, 2004.

[ISO-15946-1:02] ISO/IEC 15946-1:2002. Information technology — Security techniques
— Cryptographic techniques based on elliptic curves — Part 1: General. Stan-
dard, International Organization for Standardization, Geneva, Switzerland,
2002.

[ISO-18033-2:06] ISO/IEC 18033-2:2006. Information technology — Security techniques
— Encryption algorithms — Part 2: Asymmetric ciphers. Standard, Interna-
tional Organization for Standardization, Geneva, Switzerland, 2006.

[JY02] Marc Joye and Sung-Ming Yen. The Montgomery Powering Ladder. In Cryp-
tographic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers,
pages 291–302, 2002.

http://eprint.iacr.org/

Bibliography 89

[KAK96] Çetin Kaya Koç, Tolga Acar, and Burt Kalisky. Analyzing and Comparing
Montgomery Multiplication Algorithms. IEEE Micro, 16(3):26–33, 1996.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[Koç95] Çetin Kaya Koç. RSA Hardware Implementation. Technical report, RSA Lab-
oratories, August 1995. Version 1.0.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 1996, Proceedings, pages 104–113, 1996.

[LMSS14] Manfred Lochter, Johannes Merkle, Jörn-Marc Schmidt, and Torsten Schütze.
Requirements for Standard Elliptic Curves, Position paper of the ECC Brain-
pool. IACR Cryptology ePrint Archive, Report 2014/832, September 2014.

[LMSS15] Manfred Lochter, Johannes Merkle, Jörn-Marc Schmidt, and Torsten Schütze.
Requirements for Elliptic Curves for High-Assurance Applications. NISTWork-
shop on ECC Standards, June 2015.

[Loc05] Manfred Lochter. ECC Brainpool Standard Curves and Curve Generation
v. 1.0. Bundesamt für Sicherheit in der Informationstechnik (BSI), Bonn, Ger-
many, 2005.

[Men07] Nele Mentens. Secure and Efficient Coprocessor Design for Cryptographic Ap-
plications on FPGA. PhD thesis, Katholieke Universiteit Leuven, June 2007.

[Mil85] Victor S. Miller. Use of Elliptic Curves in Cryptography. In Advances in
Cryptology - CRYPTO ’85, Santa Barbara, California, USA, August 18-22,
1985, Proceedings, pages 417–426, 1985.

[MLPJ13] Yuan Ma, Zongbin Liu, Wuqiong Pan, and Jiwu Jing. A High-Speed Elliptic
Curve Cryptographic Processor for Generic Curves over GF (p). In Tanja Lange,
Kristin Lauter, and Petr Lisonek, editors, Proceedings of SAC 2013, volume
8282 of Lecture Notes in Computer Science, pages 421–437. Springer-Verlag,
2013.

[Mon85] Peter L Montgomery. Modular multiplication without trial division. Mathe-
matics of computation, 44(170):519–521, 1985.

[Mon87] Peter L Montgomery. Speeding the Pollard and elliptic curve methods of fac-
torization. Mathematics of computation, 48(177):243–264, 1987.

[NSS04] David Naccache, Nigel P. Smart, and Jacques Stern. Projective Coordinates
Leak. In Advances in Cryptology - EUROCRYPT 2004, International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings, pages 257–267, 2004.

90 Bibliography

[OP01] Gerardo Orlando and Christof Paar. A Scalable GF (p) Elliptic Curve Processor
Architecture for Programmable Hardware. In Ç. K. Koç, D. Naccache, and
Chr. Paar, editors, Proceedings of CHES 2001, volume 2162 of Lecture Notes
in Computer Science, pages 348–363. Springer-Verlag, 2001.

[Paa13] Christof Paar. Implementation of cryptographic schemes 1. Script of Lecture
of Chair for Embedded Security from Ruhr University Bochum, 2013.

[PP10] Christof Paar and Jan Pelzl. Understanding Cryptography: A Textbook for
Students and Practitioners. Springer, 2010.

[Sch00] Werner Schindler. A Timing Attack against RSA with the Chinese Remainder
Theorem. In Cryptographic Hardware and Embedded Systems - CHES 2000,
Second International Workshop, Worcester, MA, USA, August 17-18, 2000,
Proceedings, pages 109–124, 2000.

[Sch15] Torsten Schütze. Personal communication, 2015-05-12. Rohde & Schwarz SIT
GmbH, 2015.

[SG14] Pascal Sasdrich and Tim Güneysu. Efficient Elliptic-Curve Cryptography Using
Curve25519 on Reconfigurable Devices. In Diana Goehringer, Marco Domenico
Santambrogio, João M. P. Cardoso, and Koen Bertels, editors, Proceedings of
ARC 2014, Reconfigurable Computing: Architectures, Tools, and Applications
– 10th International Symposium, ARC 2014, Vilamoura, Portugal, April 14-
16, 2014, volume 5154 of Lecture Notes in Computer Science, pages 25–36.
Springer-Verlag, 2014.

[SW14] Werner Schindler and Andreas Wiemers. Power attacks in the presence of
exponent blinding. J. Cryptographic Engineering, 4(4):213–236, 2014.

[Wal99] Colin D. Walter. Montgomery’s Multiplication Technique: How to Make It
Smaller and Faster. In Cryptographic Hardware and Embedded Systems, First
International Workshop, CHES’99, Worcester, MA, USA, August 12-13, 1999,
Proceedings, pages 80–93, 1999.

[Xil14a] Xilinx, Inc., San Jose, CA, United States. 7 Series DSP48E1 Slice – User
Guide UG479, November 2014. v1.8.

[Xil14b] Xilinx, Inc., San Jose, CA, United States. 7 Series FPGAs Configurable Logic
Block – User Guide UG474, November 2014. v1.7.

[Xil14c] Xilinx, Inc., San Jose, CA, United States. 7 Series FPGAs GTP Transceivers
– User Guide UG482, November 2014. v1.8.

[Xil14d] Xilinx, Inc., San Jose, CA, United States. 7 Series FPGAs Memory Resources
– User Guide UG473, November 2014. v1.11.

	Introduction
	Motivation
	Related Work for Fast Elliptic Curve Multipliers in Hardware
	Research Aims
	Thesis Structure

	Elliptic Curve Cryptography
	Finite Fields
	Point Addition and Doubling
	Affine Coordinates for Short Weierstrass Curves
	Projective Coordinates for Short Weierstrass Curves
	Reduced Projective Coordinates for Short Weierstrass Curves
	Comparison of the Shown ECC Representations

	Scalar Multiplication
	Double-and-Add
	Double-and-Add-Always
	Montgomery Ladder

	Cryptographic Protocols and Algorithms
	Elliptic Curve Digital Signature Algorithm (ECDSA)
	Elliptic Curve Diffie Hellman (ECDH)
	Elliptic Curve Integrated Encryption Scheme (ECIES)

	Selected curve parameters
	Selected Side-Channel Analysis Countermeasures
	Timing Analysis
	Montgomery Ladder
	Scalar Blinding
	Randomized Projective Coordinates
	Prime Randomization

	Technical Background
	Motivation and Basics of FPGAs
	Configurable Logic Blocks and Slices
	Digital Signal Processing Blocks
	Dedicated Block-RAM

	Elliptic Curve Arithmetics in Hardware
	Efficient Scalar Multiplication using a Parallel Montgomery Ladder
	Modular Multiplication – Montgomery Multiplication
	Modular Adder and Subtractor
	Inversion
	Efficient Multiplier in FPGA using DSPs

	Design and Implementation of the Coprocessor
	Design Requirements
	Coprocessor
	Data Memory
	Coprocessor Control
	Arithmetic Unit
	Modular Multiplier MontMul
	MontMul using 17×17 Multiplication
	MontMul using 17×24 Multiplication
	More Efficient Usage of DSPs in Time
	Higher Throughput by Removing Pipeline Stages

	Adder and Subtractor

	Evaluation
	Simulation and Experimental Validation in Hardware
	Timing and Resource Consumption of CIOS Multipliers
	Conditions for the Evaluation of the Coprocessor
	Timing and Resource Consumption of Coprocessor
	Comparison to Existing Work

	Conclusion
	Acronyms
	Explanation of Coprocessor Opcodes
	Further Diagrams for Evaluation
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

